Randomized trees for time series representation and similarity
Title | Randomized trees for time series representation and similarity |
Publication Type | Journal Article |
Year of Publication | 2021 |
Authors | Görgülü, B., and M. Gokce Baydogan |
Journal | Pattern Recognition |
Volume | 120 |
Pagination | 108097 |
ISSN | 0031-3203 |
Keywords | Classification, Random trees, Representation learning, Time series |
Abstract | Most of the temporal data mining tasks require representations to capture important characteristics of time series. Representation learning is challenging when time series differ in distributional characteristics and/or show irregularities such as varying lengths and missing observations. Moreover, when time series are multivariate, interactions between variables should be modeled efficiently. This study proposes a unified, flexible time series representation learning framework for both univariate and multivariate time series called Rand-TS. Rand-TS models density characteristics of each time series as a time-varying Gaussian distribution using random decision trees and embeds density information into a sparse vector. Rand-TS can work with time series of various lengths and missing observations, furthermore, it allows using customized features. We illustrate the classification performance of Rand-TS on 113 univariate, 19 multivariate along with 15 univariate time series with varying lengths from UCR database. The results show that in addition to its flexibility, Rand-TS provides competitive classification performance. |
URL | https://www.sciencedirect.com/science/article/pii/S0031320321002843 |
DOI | 10.1016/j.patcog.2021.108097 |