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ABSTRACT 

 

 

DECISION MAKING IMPLICATIONS FOR A SELECTED 

ECHELON IN THE BEER GAME 

 

 

The beer production-distribution game, in short “The Beer Game”, is essentially a 

board game and it simulates a four echelon supply chain consisting of a retailer, 

wholesaler, distributor, and factory. During the game, every participant in a group of four 

is responsible for one of these four echelons and manages the associated inventory by 

placing orders. The aim of the game is to minimize the accumulated total cost obtained by 

the participants of a group managing each echelon. In this thesis, a mathematical model 

that is an exact one-to-one replica of the board version is constructed. The main aim of this 

thesis is to develop an understanding about how one should control an echelon in The Beer 

Game in the presence of identically controlled echelons; we assume that only the 

participant managing the echelon of concern behaves different than the rest of the group. 

We are specifically interested in the case where the echelons other than the selected one 

sub-optimally manage their individual inventories or backlogs. There can be two 

objectives: (i) the minimum cost for the echelon of concern can be obtained, (ii) the 

minimum group total cost can be obtained by optimizing the decision parameters of the 

selected echelon. Accordingly, we optimize the parameters of the anchor-and-adjust 

heuristic, which is the control policy used in this study, for the selected echelon by keeping 

the decision parameters constant for the rest of the three positions. We obtain different 

instances of the anchor-and-adjust ordering policy by optimizing stock adjustment time and 

by optimizing desired inventory of the selected echelon. In general, the group total cost can 

be decreased by allowing an increase in the total cost of the selected echelon. 

Unexpectedly, we obtained the lowest group total costs for the wholesaler when we 

minimized the group total cost by sacrificing the objective of minimizing the cost of the 

echelon of concern. 
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ÖZET 

 

 

BİRA DAĞITIM OYUNUNDA SEÇİLEN BİR TEDARİK ZİNCİRİ 

KADEMESİ İÇİN KARAR OLUŞTURMA TAVSİYELERİ 

 

 

Bira Üretim-Dağıtım Oyunu, kısaca “Bira Oyunu”, temelde masa üzerinde oynanan 

bir oyundur ve bir perakendeci, bir toptancı, bir dağıtıcı ve bir fabrikadan oluşan dört 

kademeli bir tedarik zincirinin benzetimini yapmaktadır. Oyunda, dört kişilik bir grubun 

her bir üyesi, bu dört tedarik zinciri kademesinin birinden sorumludur ve kendi kademesine 

ait envanteri verdiği siparişlerle kontrol etmektedir. Oyunun temel amacı, her bir kademeyi 

yöneten katılımcıların ortaya çıkardığı toplam grup maliyetini enküçüklemektir. Bu tezde, 

oyunun masa versiyonunun tam bir eşdeğeri olan bir matematiksel model kurulmuştur. Bu 

tezin temel amacı, benzer şekilde kontrol edilen tedarik zinciri kademelerinin varlığında, 

bir kademenin kontrolünün nasıl yapılması gerektiği konusunda anlayış geliştirmektir; 

sadece üzerine odaklanılan kademenin diğer kademelerden farklı davranış sergileyebildiği 

kabul edilmiştir. Özellikle, odaklanılan kademe dışındaki kademelerin kendi envanter veya 

birikmiş siparişlerini optimalin altında yönettikleri durumla ilgilenilmiştir. Burada iki farklı 

amaç olabilmektedir: (i) odaklanılan kademenin toplam maliyeti enküçüklenebilir, (ii) 

odaklanılan kademenin karar parametreleri eniyilenilerek tüm grubun toplam maliyeti 

enküçüklenebilir. Bu doğrultuda, bu tezde kontrol politikası olarak kullanılan çapala-ve-

düzelt sezgiseli’nin parametreleri, diğer kademelerin karar parametreleri sabit tutularak 

odaklanılan kademe için eniyilenmiştir. Odaklanılan kademe için stok düzeltme süresi ve 

hedef envanter seviyesi eniyilenerek, çapala-ve-düzelt sezgiseli için farklı politika 

durumları elde edilmiştir. Genel olarak, tüm grubun maliyeti, odaklanılan kademenin 

maliyetinde artışa izin verilerek düşürülebilmektedir. Beklenmedik bir şekilde, odaklanılan 

kademenin toplam maliyeti yerine tüm grubun toplam maliyeti enküçüklendiğinde, en 

düşük grup maliyet değerleri toptancı seviyesinde elde edilmiştir. 
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1.  INTRODUCTION 

 

 

The beer production-distribution game, in short “The Beer Game”, is a board game 

and was first introduced by Jay Forrester's System Dynamics (SD) research group of the 

Sloan School of Management at the Massachusetts Institute of Technology in the 1960s. 

The Beer Game is an application of SD modeling and simulation methodology, which is 

widely used in management education and aims to give an experience to the participants 

about the potential dynamic problems that can be encountered in supply chain 

management, such as oscillations and amplification of oscillations as one moves from 

downstream towards upstream echelons (Akkermans and Vos, 2003; Barlas, 2002; Chen 

and Samroengraja, 2000; Forrester, 1961; Forrester, 1971; Größler et al., 2008; Sterman, 

2000). A detailed description of the original beer game, which is widely played by 

numerous people with different educational backgrounds and is also used in scientific 

studies, is given in Sterman (1989) and Croson and Donohue (2006). 

 

We list some of the work on The Beer Game to give an idea about the range of 

studies based on the game. Jacobs (2000) introduced the internet-based version of The 

Beer Game and reported that this version of the game significantly reduced the time 

required to play the game. According to him, the main reason for this difference is that in 

the board version of the game, participants manually keep the records of inventories and 

backlogs and calculate the total cost, but in the internet-based version of the game, the 

game software takes care of these calculations and does so in a faster and more accurate 

manner compared to human participants. 

 

Day and Kumar (2010) used mobile phones to run the game and reported improved 

accuracy and speed due to the automated calculations. Independent from Jacobs' (2000) 

work, Samur et al. (2004 and 2005) developed a multi-player computerized version of The 

Beer Game. They first present verification runs to demonstrate that their model correctly 

represents the board game. Then they conclude that participants who played the board 

game were more successful than those who played the computerized version of the game. 

The potential causes for this result included the slower pace of progress of the board 



 2 

version, which gives more time to think about the order quantity, and the relatively more 

realistic environment of the board version. 

 

Steckel et al. (2004) examined the effect of reduced cycle times and the effect of 

shared point-of-sale (POS) information among the supply chain members in The Beer 

Game. They reported that reduced cycle times lead to reduced costs, which is an expected 

result. They further reported an interesting result that the benefit of POS information 

sharing depends on the customer demand pattern. Chaharsooghi et al. (2008) proposed a 

reinforcement learning (RL) model for ordering policies in supply chains and used The 

Beer Game model as an experimental platform. Mosekilde and Laugesen (2007) conducted 

an extensive bifurcation analysis and showed that The Beer Game can produce complex 

dynamics. Thomsen et al. (1991) also showed that it is possible to obtain complex 

dynamics from The Beer Game, including hyperchaos. 

 

The Beer Game is a four echelon supply chain consisting of a retailer, wholesaler, 

distributor, and factory; there is an inventory control problem for each one of these 

echelons. During the game, every participant in a group of four is responsible for one of 

the four echelons and manages the associated inventory by placing orders. A supply chain 

can be modeled as a series of connected stock management structures. Therefore, the 

structure of the game consists of four cascading stock management problems. The orders 

flow from downstream echelons towards upstream echelons and cases of beer flow in the 

opposite direction. The aim of the game is to minimize the accumulated total cost obtained 

by the participants of a group managing each echelon. The accumulated cost generated by 

each individual echelon is calculated at the end of the game by adding up all inventory 

holding and backlog costs obtained at the end of each simulated week (Sterman, 1989). 

 

The main aim of this thesis is to develop an understanding about how one should 

control an echelon in The Beer Game in the presence of identical group members; we 

assume that only the participant managing the echelon of concern behaves different than 

the rest of the group. In this thesis, “identical group members” means that those group 

members have the same identical instance of the anchor-and-adjust ordering policy. We are 

specifically interested in the case where the echelons other than the selected one sub-

optimally manage their individual inventories/backlogs. There can be two objectives: (i) 
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the minimum cost for the echelon of concern can be obtained, (ii) the minimum group total 

cost can be obtained by optimizing the decision parameters of the selected echelon. The 

motivation for this study is the expectation that there can be a significant difference in the 

control for these two different objectives especially when the other three group members 

control their echelons in a suboptimal way. 

 

To answer the research question, decision making processes of the computer 

simulated decision makers should be represented in the model. In his paper, Sterman 

(1989) reported and analyzed the results of 11 Beer Game trials. Sterman suggested a stock 

control ordering policy, namely the anchor-and-adjust heuristic, to be used in managing 

the level of a stock. According to the results reported in that paper, the proposed heuristic 

was a good representation of the participants’ decision making processes. Therefore, we 

represent the decision making processes of the computer simulated participants (i.e., the 

echelon of concern and the rest of the three echelons) using the anchor-and-adjust 

heuristic. In this thesis, the parameters of the anchor-and-adjust heuristic are called 

“decision parameters” and the variables of the same heuristic are called “decision 

variables”. We optimize the parameters of the anchor-and-adjust heuristic for the selected 

echelon by keeping the parameters of the anchor-and-adjust heuristic constant for the rest 

of the three positions. We carry out this optimization process for each one of the four 

echelons of the game, selecting them one by one. After we select an echelon for this 

optimization process, we change the relative weight given to the supply line compared to 

the stock in the control decisions of the other three echelons and obtain optimum parameter 

values of the anchor-and-adjust heuristic for the selected echelon. We extend the 

simulation experiments by changing the final simulated time. As a result, we obtain 

optimum parameter values of the anchor-and-adjust ordering policy for each echelon. 

 

To carry out this research, a mathematical model that is an exact one-to-one replica 

of the original board version of The Beer Game was needed. Moreover, we decided to use 

a model that had equations organized and executed in exactly the same order as the ‘five 

steps’ of the board game. We believed that such a model would facilitate the verification of 

our results and also potentially contribute to the analysis and understanding of the board 

game. We were not able to find a computer model in the literature that provided such an 

exact replica of the board game. Therefore, we first constructed a generic mathematical 
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model based on the descriptions of The Beer Game provided in Sterman (1989), which is 

given in full detail in Chapter 2, before we conduct the rest of the study. The difficulties 

faced in the model construction process are also mentioned in that chapter. 

 

In Chapter 3, we give the descriptions of the stock adjustment time (sat), weight of 

supply line (wsl), desired inventory (I*), and smoothing factor (θ), which are the main 

decision parameters of the anchor-and-adjust heuristic. We explain the potential results of 

the different values of these parameters on the dynamics of effective inventory, which is 

the difference between inventory and backlog level. In addition, we present the parameter 

settings for the experiments. 

 

Although there are some modified versions of The Beer Game, the traditional Beer 

Game is still widely used in scientific studies. In the traditional (original, standard) Beer 

Game, there is a step-up increase in the end-customer demand from four cases to eight 

cases in week five. All the echelons are forced to give orders equal to four cases of beer in 

the first four simulated weeks. The weekly end-customer demand information is available 

only to the retailer. Moreover, each echelon knows only the order quantity of its own 

customer. The factory is the producer of the beer and it has an unlimited production 

capacity. There is also no production cost of beer. The duration of the game is set to 36 

weeks. Note that the participants are informed that the game would last 50 weeks to 

prevent potential end-of-game effects. In addition, the group members do not collaborate, 

they are assumed to be decentralized. In Chapter 4, we use these standard settings of The 

Beer Game to conduct our experiments. In Chapter 5, we increase the final time of our 

simulation experiments to 144 weeks to validate or invalidate the results obtained from the 

standard beer game setting. In Chapter 6, the effect of sub-optimal control of a selected 

single echelon is investigated. 
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2.  MATHEMATICAL MODEL OF THE BEER GAME 

 

 

In his paper entitled “Advancing the Art of Simulation in the Social Sciences”, 

Axelrod (1997) reports problems that were encountered in replicating simulation models 

described in other published work. According to Axelrod, some of the replication problems 

are caused by ambiguities, gaps, and errors in the model descriptions. Despite all the 

details provided by Sterman (1989), a significant effort was required to obtain a one-to-one 

mathematical replica of the board version of the game, and we experienced difficulties 

similar to the ones experienced by Axelrod (1997): (i) Sterman provided equations for the 

general stock management task, which can form a basis in obtaining The Beer Game 

equations. However, the exact equations for The Beer Game are not present in Sterman's 

paper, except for the ordering equation. (ii) There is an ambiguity in the tie-breaking rule 

used in rounding the values of the orders. Hence, we are forced to assume a tie-breaking 

rule in rounding the values. (iii) Expectation formation is assumed to be performed 

informally by a participant in his mind and, therefore, is not listed among the five steps of 

The Beer Game. However, in the mathematical model, the decision making process is also 

captured as a part of the model and, therefore, we have to determine its place among the 

steps of the game. (iv) There is an error regarding the conceptualization of the delay 

durations. 

 

Although, The Beer Game is an application of SD methodology, a one-to-one SD 

model of the game cannot be directly obtained because the order of calculations followed 

in the game and the order of calculations followed in SD methodology will not match 

unless the order of calculations in the corresponding SD model is carefully altered by 

introducing additional variables to the model. This mismatch also contributes to the 

difficulty in obtaining a complete mathematical model of the game. 

 

Axelrod (1997, pp. 20-21) noted that: "Replication is one of the hallmarks of 

cumulative science. It is needed to confirm whether the claimed results of a given 

simulation are reliable in the sense that they can be reproduced by someone starting from 

scratch." To ease the simulation replications of our model, we provide an R code (R, 2013) 

of the mathematical model presented in this chapter. According to Axelrod (1997), 
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validity, usability, and extendibility are the three goals of a simulation model. Accordingly, 

in Section 2.2, we shortly explain how the code given in Appendix A can be used in 

experimentation and how it can be used to create a single or multi-player beer game on a 

computer. In Sterman (1989), the anchor-and-adjust heuristic formulation that is suggested 

to be used in decision making and the anchor-and-adjust heuristic formulation that is used 

in modeling the participant behavior are slightly different. In Section 2.3, we clarify the 

issue about the conceptualization of the delay durations, which is important for the 

verification of the model that we developed. In Section 2.4, the model verification section, 

we explain the differences between the two formulations, provide updated equations for 

the anchor-and-adjust heuristic formulation that is used in modeling the participant 

behavior, execute the corresponding R code given in Appendix B with the optimum 

benchmark parameter values given by Sterman, and obtain the exact same benchmark cost 

values presented in Sterman (1989). 

 

2.1.  The Structure and the Equations of the Game 

 

To conduct this research, we first constructed a mathematical model of The Beer 

Game based on a figure of the board game (see Figure 2.1 in this thesis), equations, the 

five steps of the game, and descriptions given in Sterman (1989). 

 

 

Figure 2.1.  The Board of The Beer Distribution Game (Sterman, 1989). 

 

2.1.1.  Parameters and Initial Values of the Mathematical Model 

 

   FDWRiforweeksati ,,,1   (2.1) 
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   DWRiforweekmdti ,,1   (2.2) 

 

   FDWiforweeksti ,,2   (2.3) 

 

  weekplt 2  (2.4) 

 

Where sat ( S1  in Sterman, 1989) stands for the stock adjustment time, mdt stands 

for the mailing delay time, st stands for the shipment time, and plt stands for the production 

lead time. R, W, D, and F stand, respectively, for the retailer, wholesaler, distributor, and 

factory echelons (Figure 2.1). Note that sat, wsl, θ, and I* are the decision parameters 

(Equations 2.1, 2.5, 2.6, and 2.10). The different sets of values of these parameters 

represent different instances of the anchor-and-adjust ordering policy. For the equivalency 

of the anchor-and-adjust ordering policy and order-up-to-S policy, see Appendix C. 

 

   FDWRiforessdimensionlwsli ,,,1   (2.5) 

 

   FDWRiforweeki ,,,12.0   (2.6) 

 

wsl (β in Sterman, 1989) stands for the weight of supply line and θ (also θ in Sterman, 

1989) stands for the smoothing factor used by each echelon in the game in forming 

expectations using the simple exponential smoothing forecasting method. 

 

 Stock adjustment time (sat) determines the intended time to close the gap between the 

desired level of the stock and the current stock itself. In The Beer Game, sat 

represents the number of weeks in which a decision maker wants to bring his current 

inventory level to the desired level. Smaller values of sat results in aggressive 

corrections while higher values correspond to mild corrections. 

 

 Weight of supply line (wsl) represents the relative importance given to the supply line 

compared to the main stock. In other words, wsl is the fraction of supply line 

considered in the control decisions (i.e., order decisions). When wsl is taken as one, 

the main stock and its supply line will be effectively reduced to a single stock that 
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cannot oscillate (Barlas and Ozevin, 2004; Sterman, 1989 and Chapter 17 in 2000; 

Yasarcan and Barlas, 2005a and 2005b). However, a zero value of wsl means that 

supply line is totally ignored in decision-making process and it may potentially create 

an unstable stock behavior. 

 

 Desired inventory (I*) is another parameter of the anchor-and-adjust heuristic and it 

simply represents the target inventory level. In The Beer Game, the cost function is 

asymmetric; unit backlog cost is $1.00/(case∙week) while unit inventory holding cost 

is $0.50/(case∙week). Therefore, it is usually less costly to have a positive on-hand 

inventory than having a backlog. Comparatively speaking, a better control decreases 

the requirement for large values of I* while a worse control increases this 

requirement. 

 

 Smoothing factor (θ) is the main parameter of exponential smoothing forecasting 

method and it represents the weight given to recent observations in the forecasting 

process. Although smoothing-factor is one of the parameters of the anchor-and-adjust 

heuristic, its optimization is out of the scope of this thesis. Theoretically, θ can take a 

value between 0 and 1. A zero value of θ means no corrections in the forecasted 

values. On the other hand, when it is taken as one, the exponential smoothing method 

will be equivalent to a naive forecast. It may not be practical to use a randomly 

selected smoothing factor value, even if that value fall in the theoretical range. 

According to Gardner (1985), the smoothing factor of a simple exponential 

smoothing forecasting method should be between 0.1 and 0.3 in practice. As a 

reasonable value, we suggest using a smoothing factor of 0.2 in forecasting, which is 

the middle point of the range suggested by Gardner (1985). This value of smoothing 

factor also falls in the range of 0.01 and 0.3 that is suggested by Montgomery and 

Johnson (1976). Therefore, θ is taken as 0.2 for all the echelons of the game. 

 

  weekcase
t

t
ENDCD t














5,8

5,4
 (2.7) 

 

In the equation above, ENDCD stands for the end-customer demand. To save space, 

the unit case is used to represent a case of beer. 
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  weekcaseEECD 40   (2.8) 

 

   DWRiforweekcaseEOi ,,40,   (2.9) 

 

EECD stands for the expected end-customer demand, which is assumed to be 

calculated by the retailer. EO represents expected orders calculated by the wholesaler, 

distributor, and factory echelons based on the orders they receive from their respective 

customers (i.e., the retailer's orders received by the wholesaler, the wholesaler's orders 

received by the distributor, and the distributor's orders received by the factory). A time 

index of zero is the initial value of that variable at the beginning of the simulation. 

 

   FDWRiforcaseI i ,,,0   (2.10) 

 

    casestmdtEECDSL WRR 

00,  (2.11) 

 

    casestmdtEOSL DWRW 

0,0,  (2.12) 

 

    casestmdtEOSL FDWD 

0,0,  (2.13) 

 

  casepltEOSL DF 

0,0,  (2.14) 

 

I* represents the desired inventory, and SL* stands for the desired supply line. 

 

   FDWRiforcaseBi ,,,00,   (2.15) 

 

   FDWRiforcaseI i ,,,120,   (2.16) 

 

   DWRiforcaseITI1i ,,40,   (2.17) 
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  caseWIPI1 40   (2.18) 

 

   DWRiforcaseITI2 i ,,40,   (2.19) 

 

  caseWIPI2 40   (2.20) 

 

Equations 2.15 through 2.20 represent initial backlogs, initial inventories, and initial 

in-transit inventories (i.e., the values of the state variables at week zero). ITI2 (in-transit 

inventory 2) represents the shipping delay box just before the inventory box, and ITI1 (in-

transit inventory 1) represents the shipping delay box before that (see Figure 2.1 on page 

6). The value of ITI1 belonging to an echelon is shifted to ITI2 of the same echelon after 

one simulated week. ITI2 is added to the inventory (I) or subtracted from the backlog (B) 

after a week. Likewise, WIPI1 and WIPI2 stand for work-in-process inventories. WIPI1 is 

the work-in-process inventory of the factory that will be shifted to WIPI2 after a week and 

that will eventually reach to the factory's inventory. WIPI2 is the work-in-process 

inventory that will be added to the factory's inventory (IF) or subtracted from the backlog 

(BF) after a week. 

 

   DWRiforweekcaseOi ,,41,   (2.21) 

 

  weekcasePSR 41   (2.22) 

 

   FDWiforweekcaseIOi ,,41,   (2.23) 

 

Oi stands for orders that are placed by echelon i (retailer, wholesaler, and 

distributor). PSR stands for the production start rate, which is the production order given 

by the factory itself. IOi stands for the incoming orders (the box right to the box of orders 

placed in Figure 2.1) that are received by echelon i. The purchase orders (O) placed by the 

retailer, wholesaler, and distributor and the production orders (PSR) given by factory at 

week t are placed for week (t + 1). Orders placed at week (t + 1) by the retailer, 

wholesaler, and distributor become the incoming orders (IO), respectively, for the 

wholesaler, distributor, and factory at week (t + 2). Therefore, the end-customer demand 
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(ENDCD), which is given by Equation 2.7, orders (O), and production start rate (PSR) 

have no value at week zero, but they are assigned a value for the first time at week 1. 

 

   FDWRiforTCi ,,,$00,   (2.24) 

 

   caseweekuihc  $5.0  (2.25) 

 

   caseweekubc  $1  (2.26) 

 

TC, uihc, and ubc stand for the total cost generated by an echelon, the unit inventory 

holding cost, and the unit backlog cost, respectively. 

 

The remaining model equations are given in an order based on the steps of the game 

presented in Sterman (1989). This sequence should strictly be followed while performing 

calculations to ensure an accurate representation of the board version of The Beer Game 

(Figure 2.1). 

 

After initializing the board, the game facilitator declares the time as week 1, and the 

game starts from Step 1. After the completion of all steps (at the end of Step 5), the 

facilitator adds one week to the current time, declares it, and the game continues repeating 

the same process. 

 

2.1.2.  Step 1:  Receive Inventory and Advance Shipping Delays 

 

In The Beer Game, cases of beer flow from right to left (i.e., from the upper echelon 

to the lower) and orders flow from left to right (i.e., from lower echelon to the upper). In 

the first step of the game, the in-transit inventory (work-in-process inventory for the 

factory) that is immediately to the right of an inventory is added to the inventory by the 

participants. After that, the contents of the rightmost in-transit inventory boxes are shifted 

to the near-right in-transit inventory boxes, and the contents of the rightmost work-in-

process inventory box are shifted to the near-right work-in-process inventory box. As a 

result, the rightmost in-transit inventory boxes and WIPI1 become empty. 
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   DWRiforcaseITI2ITI tititi ,,1,1,,    (2.27) 

 

  caseWIPI2ITI ttFtF 11,,    (2.28) 

 

In the above equations, TI 's are temporary calculation variables used to represent the 

temporary values of inventories. In this study, the equality sign is used in assigning values 

to parameters and variables, and it does not imply a mathematical equality. Therefore, TI's 

are not a must. However, by adding TI's, we aim to prevent the potential ambiguity that 

may be observed in Equations 2.43-2.46. Otherwise, one would see the same inventory (I) 

variable on the left and right hand sides of the same equation. 

 

   DWRiforcaseITI1ITI2 titi ,,1,,    (2.29) 

 

  caseWIPI1WIPI2 tt 1  (2.30) 

 

   DWRiforcaseITI1 ti ,,0,   (2.31) 

 

  caseWIPI1t 0  (2.32) 

 

Equations 2.31 and 2.32 are redundant in the sense that the exclusion of these 

equations will not prevent the correct simulation of the mathematical model, but we 

present them in order to follow the same exact process as in the board version of the game. 

 

2.1.3.  Step 2:  Fill Orders 

 

In this step, each echelon calculates the amount of beer to be shipped to its customer 

(i.e., shipments from retailer to end customer, from wholesaler to retailer, from distributor 

to wholesaler, and from factory to distributor) by considering incoming orders from the 

customer, the backlog of orders, and the inventory of that echelon. After calculating 

shipments (S), each participant, except for the retailer, puts shipments to the boxes on their 

near left (i.e., ITI1R, ITI1W, ITI1D, and WIPI1 are updated). 
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 (2.36) 

 

The shipment variables are flow variables in essence, and the unit of these variables 

is  weekcase . However, we use stock variables that have  case  as their unit in 

calculating the shipment variables. Therefore, corrections in the units are necessary. 

Accordingly,  week1  and  week1  are used in the shipment equations (Equations 2.33-

2.36). These corrections have no effect on the numerical values, but they correct the units. 

To easily comprehend the issue, consider a car that traveled for one hour and covered 50 

miles in this journey. In such a case, the average speed of the car during that one hour 

would be 50 miles per hour. Although the units of the distance covered by the car and its 

average speed are different, their numerical values are not. Note that, for similar reasons, 

we also use the same type of correction in many of the remaining equations. 

 

     DWRiforcaseweekSITI1 titi ,,1,,   (2.37) 

 

    caseweekPSRWIPI1 tt 1  (2.38) 

 

2.1.4.  Step 3:  Record Inventory or Backlog on the Record Sheet 

 

After filling orders, participants either count their inventories if they have chips 

representing the cases of beer in their inventory boxes or calculate the backlogs if they fail 

to satisfy the totality of the past backlogs and the current orders received from their 
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customers. They record the inventory or backlog on their record sheets. This is represented 

by the equations below: 

 

      caseweekSENDCDBB tENDCttRtR 1,1,,    (2.39) 

 

      caseweekSIOBB tRtWtWtW 1,,1,,    (2.40) 

 

      caseweekSIOBB tWtDtDtD 1,,1,,    (2.41) 

 

      caseweekSIOBB tDtFtFtF 1,,1,,    (2.42) 

 

 

    caseweekSTII tENDCtRtR 1,,,   (2.43) 

 

    caseweekSTII tRtWtW 1,,,   (2.44) 

 

    caseweekSTII tWtDtD 1,,,   (2.45) 

 

    caseweekSTII tDtFtF 1,,,   (2.46) 

 

2.1.5.  Expectation Formation 

 

Expectation formation is assumed to be performed informally by a participant in his 

mind and, therefore, is not listed among the five steps of The Beer Game. Sterman (1989) 

modeled the expectation formation process using the simple exponential smoothing 

method (see Equation 9 in Sterman, 1989). This process is reflected by the equations given 

below: 

 

      weekcaseweekEECDENDCDEECDEECD ttRtt 111     (2.47) 

 

      weekcaseweekEOIOEOEO tRtWWtRtR 11,,1,,     (2.48) 
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      weekcaseweekEOIOEOEO tWtDDtWtW 11,,1,,     (2.49) 

 

      weekcaseweekEOIOEOEO tDtFFtDtD 11,,1,,     (2.50) 

 

2.1.6.  Step 4:  Advance the Order Slips 

 

Orders (O) placed by the retailer, wholesaler, and distributor become incoming 

orders (IO), respectively, for the wholesaler, distributor, and factory after a week. 

 

  weekcaseOIO tRtW ,1,   (2.51) 

 

  weekcaseOIO tWtD ,1,   (2.52) 

 

  weekcaseOIO tDtF ,1,   (2.53) 

 

2.1.7.  Step 5:  Place Orders 

 

In the board version of The Beer Game, participants place orders and production 

requests in this last step. According to Sterman (1989), the decision making process of 

participants can be represented by using the anchor-and-adjust decision heuristic. The 

equations below (Equations 2.54-2.68) are all part of this heuristic, which finally results in 

orders and production requests. The retailer, wholesaler, and distributor place orders 

(Equations 2.65-2.67) and the factory decides on the production requests (Equation 2.68). 

SL* stands for the desired supply line, EI stands for the effective inventory, SL stands for 

the supply line, SLA stands for the supply line adjustment, IA stands for the inventory 

adjustment, and PSR stands for the production start rate. The anchor of the anchor-and-

adjust heuristic is the expected loss from the stock, which is 
tEECD  in Equation 2.65, 

tREO ,  in Equation 2.66, tWEO ,  in Equation 2.67, and tDEO ,  in Equation 2.68. 

 

  casestmdtEECDSL WRttR )(,   (2.54) 
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  casestmdtEOSL DWtRtW )(,,   (2.55) 

 

  casestmdtEOSL FDtWtD )(,,   (2.56) 

 

  casepltEOSL tDtF 

,,  (2.57) 

 

 

   FDWRiforcaseBIEI tititi ,,,,,,   (2.58) 

 

 

    caseITI2ITI1BweekIOSL tRtRtWtWtR ,,,1,, 1    (2.59) 

 

    caseITI2ITI1BweekIOSL tWtWtDtDtW ,,,1,, 1    (2.60) 

 

    caseITI2ITI1BweekIOSL tDtDtFtFtD ,,,1,, 1    (2.61) 

 

  caseWIPI2WIPI1SL tttF ,  (2.62) 

 

 

   FDWRiforweekcasesatSLSLwslSLA ititiiti ,,,/)( ,,,    (2.63) 

 

 

   FDWRiforweekcasesatEIIIA itiiti ,,,/)( ,,    (2.64) 

 

 

 



































 




week

case

otherwise
otherwise

SLAIAEECDSLAIAEECD
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,,,,1,
(2.65) 
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otherwise
otherwise

SLAIAEOSLAIAEO

t

PSR tFtFtDtFtFtDt
,

,0

0,

5,4

,,,,,,1
(2.68) 

 

All equations belonging to the five steps of the game (Equations 2.27-2.69) are 

calculated for the current simulated week, except for the equations for incoming orders 

(2.51-2.53), orders (2.65-2.67), and production start rate (2.68). The equations for 

incoming orders, orders, and production start rate are calculated for the next simulated 

week. In the board version of the game, orders can only be integers. The rounding function 

( ) used in Equations 2.65-2.68 (and also Equations 2.72-2.75) reflects this aspect of the 

game. In rounding the values, we assume that the "round half away from zero" tie-breaking 

rule is used. 

 

In the original game, the accumulated total cost of each echelon is calculated at the 

end of the game from the record sheet kept by the participant managing that echelon. In the 

mathematical model, the total cost is calculated at the end of each simulated week using 

the equation given below: 

 

       FDWRiforweekBubcIuihcTCTC titititi ,,,$1,,1,,    (2.69) 

 

After this final step, the simulated time is increased by one week and announced to 

the participants. The game continues by repeating the whole process starting from Step 1 

until Step 5 of week 36 is completed. After the simulation ends, the main performance 

measure, which is group total cost (GTC), is calculated. 

 



 18 

  $36,36,36,36, FDWR TCTCTCTCGTC   (2.70) 

 

2.2.  R Code of the Mathematical Model as an Experimental Platform 

 

The R code of the mathematical model is given in Appendix A, which is ready to be 

executed. As mentioned before, Equations 2.1, 2.5, 2.6, and 2.10 are decision parameters, 

and their different values represent different instances of the anchor-and-adjust ordering 

policy. Hence, one can change the values of these parameters in the code and re-execute it 

to obtain the resulting cost values. Furthermore, by simply writing the name of a variable, 

the weekly values of that variable can easily be obtained. In this way, the code serves as an 

experimental platform. To create different settings for a simulation experiment, one can 

also change the end-customer demand pattern given by Equation 2.7, the values of other 

parameters, and the initial values of the stock variables, but those changes will imply a 

diversion from the original setting of The Beer Game. 

 

Simulation experiments described in the previous paragraph can also be conducted in 

another programming environment by re-writing the code using that programming 

language. One can also develop a single or multi-player beer game using a programming 

environment that supports user interface creation. In that case, the respective order 

equation should be removed from the code, and a user or multiple users would be asked to 

insert values for orders of that(those) echelon(s) instead. 

 

2.3.  A Discussion on Acquisition Lags 

 

In The Beer Game, the acquisition lag is the summation of the mailing delay time 

and shipment time for the retailer, wholesaler, and distributor, and it is directly equal to the 

production lead time for the factory. In the game, orders placed by an echelon (i.e., the 

retailer, wholesaler, or distributor) at week t will reach the inventory of that echelon at 

week (t + 4) given that the supplier of that echelon has sufficient inventory to fulfill the 

order. For the factory, orders given at week t will be received at week (t + 3). Therefore, 

Sterman (1989) states many times in his paper that the acquisition lag for the retailer, 

wholesaler, and distributor is at least 4 weeks, and it is always 3 weeks for the factory. 

However, we claim that orders placed at Step 5 of week t are for week (t + 1) (see 
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Equations 2.21, 2.22, 2.65-2.68, and 2.72-2.75). Therefore, slightly changing the game, by 

placing orders at the beginning of Step 1 of week (t + 1) instead of placing them at the end 

of Step 5 of week t, will make no difference. Accordingly, in our mathematical model, the 

acquisition lags used in calculating the values of the desired supply line are 3, 3, 3, and 2 

weeks for the retailer, wholesaler, distributor, and factory, respectively (see Equations 2.2-

2.4, 2.11-2.14, and 2.54-2.57). In the desired supply line equations (2.11-2.14 and 2.54-

2.57), which correspond to Equation 7 in Sterman (1989), using acquisition lags of 4 

weeks (for the retailer, wholesaler, and distributor) and 3 weeks (for the factory) instead of 

3 weeks (for the retailer, wholesaler, and distributor) and 2 weeks (for the factory) will 

create a steady-state error in the dynamics. 

 

2.4.  Verification of the Mathematical Model 

 

After constructing a one-to-one model of The Beer Game, we entered the optimal 

decision parameter values suggested by Sterman (1989) into our model. These parameter 

values are 0, 1, and 1 for θ (smoothing factor; also θ in Sterman, 1989), sat (stock 

adjustment time; S1  in Sterman, 1989), and wsl (weight of supply line; β in Sterman, 

1989), respectively, for all echelons. The other decision parameter given by Sterman is S', 

which is defined as I* (desired inventory; S* in Sterman, 1989) plus wsl times SL* (desired 

supply line; SL* in Sterman, 1989); see Equation 2.71 and the unnumbered S' equation in 

Sterman (1989, p. 334). Sterman gives the optimal values of S' as 28, 28, 28, and 20 for the 

retailer, wholesaler, distributor, and factory echelons, respectively. 

 

   FDWRiforcaseSLwslIS iiii ,,,**   (2.71) 

 

In our mathematical model, the SL* values are dynamically updated as the expected 

orders from the customers change. Thus, S' should also be a variable. However, Sterman 

uses constant SL* and S' values. If the S' value is used instead of separate I* and SL* 

values and if it is a constant, the order equations (Equations 2.65-2.68) become as follows: 

 



 20 

 

















































































































week

case

otherwise

otherwise

sat

SLwsl

EIS

EECD

sat

SLwsl

EIS

EECD

t

O

R

tRR

tRR

t

R

tRR

tRR

t

tR
,

,0

0,

5,4

,

,

,

,

1,
 (2.72) 

 

 

















































































































week

case

otherwise

otherwise

sat

SLwsl

EIS

EO

sat

SLwsl

EIS

EO

t

O

W

tWW

tWW

tR

W

tWW

tWW

tR

tW
,

,0

0,

5,4

,

,

,

,

,

,

1,
(2.73) 

 

 

















































































































week

case

otherwise

otherwise

sat

SLwsl

EIS

EO

sat

SLwsl

EIS

EO

t

O

D

tDD

tDD

tW

D

tDD

tDD

tW

tD
,

,0

0,

5,4

,

,

,

,

,

,

1,

(2.74) 

 

 

















































































































week

case

otherwise

otherwise

sat

SLwsl

EIS

EO

sat

SLwsl

EIS

EO

t

PSR

F

tFF

tFF

tD

F

tFF

tFF

tD

t
,

,0

0,

5,4

,

,

,

,

,

,

1
 (2.75) 

 

After simulating our model with the optimum θ, sat, wsl, and S' values using the 

order equations (Equations 2.72-2.75), we obtained the exact same benchmark cost values 

reported by Sterman, which supports our claim that our model is an exact representation of 

The Beer Game. Note that, the conceptual error regarding the acquisition lags has no effect 

on the model used by Sterman in optimizing the parameters because S' is a constant; it is 

not dynamically calculated during the optimization runs. The R code of the mathematical 
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model that is modified with and for the ordering equations (Equations 2.72-2.75) is given 

in Appendix B. 
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3.  PROBLEM DEFINITION AND EXPERIMENTAL PARAMETERS 

 

 

The main aim of this thesis is to develop an understanding about how one should 

control an echelon in The Beer Game for the different types of behaviors that can be shown 

by the other three group members, which we assume to have the same identical instance of 

the anchor-and-adjust ordering policy; only the participant managing the echelon of 

concern behaves different than the rest of the group. There can be two objectives: (i) the 

minimum cost for the echelon of concern can be obtained, (ii) the minimum group total 

cost can be obtained by optimizing the decision parameters of the selected echelon. The 

motivation for this study is the expectation that there can be a significant difference in the 

control for these two different objectives especially when the other three group members 

control their echelons in a suboptimal way. 

 

We represent the decision making processes of the computer simulated participants 

(i.e., the echelon of concern and the rest of the three echelons) using the anchor-and-adjust 

heuristic. We optimize the parameters of the anchor-and-adjust heuristic for the selected 

echelon by keeping the parameters of the anchor-and-adjust heuristic constant for the rest 

of the three positions. We carry out this optimization process for each one of the four 

echelons of the game, selecting them one by one. After we select an echelon for this 

optimization process, we change the relative weight given to the supply line compared to 

the stock in the control decisions of the other three echelons and obtain optimum parameter 

values for the selected echelon. As a result, we obtain optimum parameter values for each 

echelon. 

 

According to our observations, the dynamics obtained in 36 week simulations can 

remain incomplete that might have an effect on the optimum sat and I* values and, as a 

result, the optimum values may not be valid in the long term. To eliminate these potential 

unwanted effects, a longer simulation time is selected and all experiments are re-

conducted. 
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3.1.  The Parameters of the Anchor-and-Adjust Heuristic 

 

In this subsection, we present important decision parameters of the anchor-and-adjust 

heuristic and explain the meaning of different values of these parameters. Note that anchor-

and-adjust heuristic is equivalent to order-up-to-S policy only for a selected set of values of 

these parameters (see Appendix C). 

 

 Stock adjustment time (sat) determines the intended time to close the gap between the 

desired level of the stock and the current stock itself. In The Beer Game, sat 

represents the number of weeks in which a decision maker wants to bring his current 

inventory level to the desired level. Smaller values of sat results in aggressive 

corrections while higher values correspond to mild corrections. 

 

 Weight of supply line (wsl) represents the relative importance given to the supply line 

compared to the main stock. In other words, wsl is the fraction of supply line 

considered in the control decisions (i.e., order decisions). When wsl is taken as one, 

the main stock and its supply line will be effectively reduced to a single stock that 

cannot oscillate (Barlas and Ozevin, 2004; Sterman, 1989 and Chapter 17 in 2000; 

Yasarcan and Barlas, 2005a and 2005b). However, a zero value of wsl means that 

supply line is totally ignored in decision-making process and it may potentially create 

an unstable stock behavior. 

 

 Desired inventory (I*) is another parameter of the anchor-and-adjust heuristic and it 

simply represents the target inventory level. In The Beer Game, the cost function is 

asymmetric; unit backlog cost is $1.00/(case∙week) while unit inventory holding cost 

is $0.50/(case∙week). Therefore, it is usually less costly to have a positive on-hand 

inventory than having a backlog. Comparatively speaking, a better control decreases 

the requirement for large values of I* while a worse control increases this 

requirement. 

 

 Smoothing factor (θ) is the main parameter of exponential smoothing forecasting 

method and it represents the weight given to recent observations in the forecasting 

process. Although smoothing-factor is one of the parameters of the anchor-and-adjust 
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heuristic, its optimization is out of the scope of this thesis. Theoretically, θ can take a 

value between 0 and 1. A zero value of θ means no corrections in the forecasted 

values. On the other hand, when it is taken as one, the exponential smoothing method 

will be equivalent to a naive forecast. It may not be practical to use a randomly 

selected smoothing factor value, even if that value fall in the theoretical range. 

According to Gardner (1985), the smoothing factor of a simple exponential 

smoothing forecasting method should be between 0.1 and 0.3 in practice. As a 

reasonable value, we suggest using a smoothing factor of 0.2 in forecasting, which is 

the middle point of the range suggested by Gardner (1985). This value of smoothing 

factor also falls in the range of 0.01 and 0.3 that is suggested by Montgomery and 

Johnson (1976). Therefore, θ is taken as 0.2 for all the echelons of the game. 

 

3.2.  The Parameter Settings for the Three Identically Controlled Echelons 

 

In our experiments, as we mentioned before, we focus only one of the echelons and 

assume that the control parameters for the other three echelons are identical. We do not 

experiment with the values of sat and I*; the values that we use in all the experiments are 

sat = 1 (i.e., they aim to close the gap between their own desired inventory and current 

inventory in one week) and I* = 0 (i.e. they aim to carry zero net inventory) for all the 

three echelons. The reason for selecting I* = 0 is that if EI is zero for an echelon in a 

simulated week, that echelon produces no costs in that week. We use wsl as the 

experimental parameter assigning it the same value for all the three echelons during each 

set of simulation experiments for the optimization runs. 

 

The reason for selecting wsl as the experimental parameter lies in the power of this 

parameter in creating different types of dynamics. The Beer Game is a discrete-time 

simulation. However, if The Beer Game were a continuous-time simulation, carrying out 

additional experiments by changing the values of sat, and I* of the three identical echelons 

would not bring additional behavioral richness. In such a case, The Beer Game would 

consist of four continuous-time stock management tasks. To demonstrate the power of wsl 

as an experimental parameter, we focus only one of the isolated stock management tasks. 

In Figure 3.1, the different types of dynamics that can be generated by simply changing the 

value of wsl are presented for a simple stock management task in continuous time: 
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 Line 1 – Unstable oscillations around the desired level (wsl = a) 

 Line 2 – Marginally stable oscillations around the desired level (wsl = b) 

 Line 3 – Stable oscillations around the desired level (wsl = c) 

 Line 4 – Stable approach to the desired level (wsl = 1) 

 Line 5 – Overdamped (i.e., comparatively slow) approach to the desired level 

(wsl > 1) 

 

When supply line delay is discrete, the values of a, b, and c will be different for the 

different parameter settings, but their relative values will always satisfy the following 

relationship: 

 

 10  cba  (3.1) 
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Figure 3.1.  Stock dynamics with respect to different values of wsl. 

 

It is possible to generate the aforementioned dynamics by assigning different values 

to wsl in a continuous-time model. However, in a discrete-time model, only wsl values 

between zero and one are meaningful. A wsl value greater than one cannot be used in a 

discrete-time model when sat is equal to one unit time because supply line adjustment time, 
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which is wslsat / , becomes less than one in this case. Note that, supply line adjustment 

time is an original parameter of the anchor-and-adjust heuristic. In our model, we prefer to 

replace supply line adjustment time with wslsat /  because the inclusion of Weight of 

Supply Line facilitates both the design of experiments and analysis of the results of those 

experiments. A supply line adjustment time value less than one unit time can potentially 

generate unexpected and meaningless behaviors similar to having a stock adjustment time 

value less than one unit time. In order to include the overdamped behavior in our 

experiments, we take wsl as unity for the three identical echelons and set their sat values to 

a value greater than one week. However, the results of the experiments with these settings 

show that the overdamped behavior of the other three echelons does not generate results 

different than the case where wsl and sat of the other three echelons are taken as unity and 

one week, respectively. Therefore, the runs for the overdamped behavior of the three 

identical echelons are excluded from this thesis. 

 

As a side note, the level of the aforementioned experimental power of wsl would be 

lower if the acquisition lag (i.e., mdtR + stW, mdtW + stD, mdtD + stF, and plt for the retailer, 

wholesaler, distributor, and factory echelons, respectively) was lower and/or if the sat 

value was higher. 

 

3.3.  The Parameter Settings for the Selected Echelon 

 

The optimum value of wsl is equal to unity for a discrete-delay single-stock-

management problem (Mutallip, 2013). We assume that the echelon of concern uses this 

optimum value of wsl because, in our case, wsl equal to unity would either be optimum or 

very close to it. Moreover, when wsl is taken as unity for the echelon of interest, his 

inventory and supply line will be effectively reduced to a single stock (i.e., inventory), 

thus, he can adjust both his supply line and inventory only changing stock adjustment time 

values. However, adjusting wsl values instead of stock adjustment time has an effect only 

on supply line adjustment term in the control decisions. 

 

There are two cases: 
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 We optimize stock adjustment time of the selected echelon by keeping I* of the same 

echelon constant at zero cases. 

 We optimize I* of the selected echelon by keeping stock adjustment time of the same 

echelon constant at one week. 

 

In all of the above optimization cases, optimizations are carried out with respect to 

other three participants’ control behaviors (i.e., for the different wsl values they use). As 

we mentioned before, the echelon of interest makes optimizations under two different 

objectives: (i) The echelon of interest optimizes his own cost, (ii) the echelon of interest 

optimizes the group total cost. The aim in these experiments is to observe the differences 

and similarities of parameter and cost values under these two different objectives. 

 

3.4.  Simulation Experiments 

 

The summary of the simulation experiments conducted is presented in Table 3.1. In 

each set of experiment, wsl values of the three identically controlled echelons changes 

from 0 to 1 with a step of 0.1 resulting in 176 (16×11) sub-set of experiments. For each one 

of these sub-sets, we carry out two different cases of optimization experiments for the 

echelon of concern: 

 

 Case 1: optimize sat 

 Case 2: optimize I* 
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Table 3.1.  Simulation experiments. 

Set of 

Experiment 

Final Time 
Echelons Objectives 

(weeks) 

36 144 R W D F Own GTC 

1 X  X    X  

2 X  X     X 

3 X   X   X  

4 X   X    X 

5 X    X  X  

6 X    X   X 

7 X     X X  

8 X     X  X 

9  X X    X  

10  X X     X 

11  X  X   X  

12  X  X    X 

13  X   X  X  

14  X   X   X 

15  X    X X  

16  X    X  X 
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4.  RESULTS FOR THE STANDARD BEER GAME SETTING 

 

 

In this chapter, we present observations for the standard setting of The Beer Game, 

which correspond to the set of experiments from one to eight (Table 3.1). We are interested 

in the decision making parameters of the echelon of concern and the related costs for the 

different control profiles (i.e., unstable oscillations, marginally stable oscillations, stable 

oscillations, and stable approach) of the three other echelons and for the two different 

objectives (i.e., we minimize the total cost of echelon of concern and we minimize group 

total cost). 

 

4.1.  Optimizing Stock Adjustment Time 

 

In the optimization experiments, we assign integer values to sat of the selected 

echelon ranging from 1 week to 16 weeks. In addition, we also assign infinity to it, which 

implies no aimed corrections for the stock and supply line of that echelon. Then, we select 

a sat value that generates the minimum cost. In each sub-section, we present three different 

tables: 

 

(i) The first table displays parameters and related cost values when we minimize the cost 

of selected echelon. First column gives wsl values used by the other three echelons. 

Second column gives optimum sat values for the echelon of concern. In the third 

column, we give GTC values. In the fourth, fifth, sixth, and seventh columns, we 

present individual total cost values of the echelons. 

(ii) The second table displays parameters and related cost values when we optimize 

group total cost for the echelon of concern. 

(iii)The third table compares the results presented in the first and second tables. First 

column gives wsl values used by the other three echelons. The second column gives 

optimum sat values when we minimize the cost of echelon of concern. The third 

column presents optimum sat values when we minimize group total cost by trying 

different sat values for the echelon of concern. In the fourth column, we present the 

percent increase in the total cost value of the echelon of concern when we change the 

objective from minimizing the cost of echelon of concern to minimizing GTC. 
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Finally, in the fifth column, we present the percent decrease in GTC when the we 

change the objective from minimizing the cost of echelon of concern to minimizing 

GTC. 

 

4.1.1.  Observations at the Retailer Echelon 

 

When we minimize the retailer’s total cost, the optimum value of sat for the retailer 

becomes one week for all wsl values used by the other three echelons (Table 4.1). This 

means that the retailer should close the gap between his desired inventory and inventory in 

one week. 

 

Table 4.1.  Optimum sat and corresponding cost values when we optimize the 

retailer’s total cost. 

Wwsl  

Dwsl  

Fwsl  

Optimum 

Rsat  

(week) 

GTC  ($) RTC  ($) WTC  ($) 
DTC  ($) FTC  ($) 

0.0 1 20816 605 3353.5 9369 7488.5 

0.1 1 12668.5 585 2121.5 5753.5 4208.5 

0.2 1 8248.5 561 1448.5 3632.5 2606.5 

0.3 1 5666.5 536 1008 2425 1697.5 

0.4 1 4263.5 530 771 1734.5 1228 

0.5 1 3173 544 635 1149.5 844.5 

0.6 1 2507.5 520 560 762 665.5 

0.7 1 2236.5 530 527.5 625.5 553.5 

0.8 1 1957.5 505 511 530 411.5 

0.9 1 1567.5 456 425.5 399 287 

1.0 1 1428.5 445 400 341 242.5 
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Figure 4.1.  Dynamics of EI levels of the four echelons when wslW,D,F = 0 and 

satR = 1. 

 

When we optimize group total cost by trying different sat values for the retailer, the 

optimum value of sat becomes infinity for wsl values between 0.0 and 0.6. This means that 

the retailer makes no adjustments in this range; he only gives orders equal to the expected 

value of end-customer demand. For wsl equals 0.7 and 0.8, the optimum sat becomes 16 

weeks, which corresponds to mild adjustments (see Table 4.2). 
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Table 4.2.  Optimum sat and corresponding cost values when we optimize group 

total cost by trying different sat values for the retailer. 

Wwsl  

Dwsl  

Fwsl  

Optimum 

Rsat  

(week) 

GTC  ($) RTC  ($) WTC  ($) 
DTC  ($) FTC  ($) 

0.0 ∞ 15114.5 933 2470 6524 5187.5 

0.1 ∞ 9266 913 1562.5 3973 2817.5 

0.2 ∞ 5936.5 880 1035.5 2417.5 1603.5 

0.3 ∞ 4196.5 862 720.5 1585.5 1028.5 

0.4 ∞ 3298 860 585 1080 773 

0.5 ∞ 2699.5 871 489 700.5 639 

0.6 ∞ 2399 859 467.5 539.5 533 

0.7 16 2129 708 465.5 534 421.5 

0.8 16 1891 692 423 437.5 338.5 

0.9 1 1567.5 456 425.5 399 287 

1.0 1 1428.5 445 400 341 242.5 

 

 

Figure 4.2.  Dynamics of EI levels of the four echelons when wslW,D,F = 0 and 

satR = ∞. 
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Figure 4.3.  Retailer’s cost values for the two different objectives. 
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Figure 4.4.  Group total cost values for the two different objectives. 

 

In Figure 4.3, we observe that there is a difference in the retailer’s cost values for wsl 

between 0.0 and 0.8 under two different objectives (i.e., the minimum cost for the retailer 

can be obtained and the minimum group total cost can be obtained by optimizing the 

retailer’s sat). In Figure 4.4, one can observe a difference in the group total cost values too. 

We conclude that we can obtain lower GTC values (Figure 4.4) by sacrificing the objective 
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of minimizing the retailer’s total cost for wsl values less than or equal to 0.8. In both 

figures, one cannot observe a difference between the two lines of costs for wsl > 0.8. 

 

Table 4.3.  The percent changes in the optimum RTC  and in the optimum GTC. 

Wwsl  

Dwsl  

Fwsl  

Rsat  

for 

Obj. 1 

Rsat  

for 

Obj. 2 

Change in RTC  

(%) 

Change in GTC  

(%) 

0.0 1 ∞ 54.21 -27.39 

0.1 1 ∞ 56.07 -26.86 

0.2 1 ∞ 56.86 -28.03 

0.3 1 ∞ 60.82 -25.94 

0.4 1 ∞ 62.26 -22.65 

0.5 1 ∞ 60.11 -14.92 

0.6 1 ∞ 65.19 -4.33 

0.7 1 16 33.58 -4.81 

0.8 1 16 37.03 -3.40 

0.9 1 1 0.00 0.00 

1.0 1 1 0.00 0.00 

 

Table 4.3 presents the percent changes in the optimum retailer’s total cost ( RTC ) and 

in the optimum group total cost (GTC) for each wsl value when we change the objective of 

the minimization problem from “optimizing the retailer’s total cost” to “optimizing group 

total cost by optimizing the retailer’s sat”. For example, when wsl values for the 

wholesaler, the distributor and the factory are equal to zero, we can reduce group total cost 

by 27.39% and this reduction results in a 54.21% increase in the retailer’s optimal total 

cost. The greatest reduction in the group total cost (-28.03%) is achieved for wsl = 0.2. We 

can reduce the group total cost by only 4.33% for wsl = 0.6. However, for the same wsl 

value, we need to increase the retailer’s total cost by 65.19% to be able to achieve that 

relatively small improvement. 
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4.1.2.  Observations at the Wholesaler Echelon 

 

When we minimize the wholesaler’s total cost, the optimum value of sat becomes 

equal to one week for all wsl values of the other three echelons (Table 4.4). In other words, 

taking sat as one week minimizes the wholesaler’s total cost. 

 

Table 4.4.  Optimum sat and corresponding cost values when we optimize the 

wholesaler’s total cost. 

Rwsl  

Dwsl  

Fwsl  

Optimum 

Wsat  

(week) 

GTC  ($) RTC  ($) WTC  ($) 
DTC  ($) FTC  ($) 

0.0 1 24069 3570.5 3925 8328 8245.5 

0.1 1 14013.5 2130 2502 4907.5 4474 

0.2 1 9033.5 1467 1763.5 3073 2730 

0.3 1 6212 1056 1372 1992.5 1791.5 

0.4 1 4554.5 807 1124 1385 1238.5 

0.5 1 3349 682.5 906 874 886.5 

0.6 1 2666 592.5 763.5 690.5 619.5 

0.7 1 2258.5 558 643 572.5 485 

0.8 1 1991.5 509.5 565 507 410 

0.9 1 1711 474.5 476 434.5 326 

1.0 1 1428.5 445 400 341 242.5 

 

When we optimize group total cost by trying different sat values for the wholesaler, 

we observe that making no stock and supply line adjustments minimizes group total cost 

until wsl is equal to 0.8. For wsl = 0.8, the optimum value of sat is 15 weeks. For wsl 

greater than or equal to 0.9, the optimum sat value becomes one week. 
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Table 4.5.  Optimum sat and corresponding cost values when we optimize group 

total cost by trying different sat values for the wholesaler. 

Rwsl  

Dwsl  

Fwsl  

Optimum 

Wsat  

(week) 

GTC  ($) RTC  ($) WTC  ($) 
DTC  ($) FTC  ($) 

0.0 ∞ 11785 2185 5331.5 1606.5 2662 

0.1 ∞ 7081.5 1483 3081.5 1005.5 1511.5 

0.2 ∞ 4781.5 1060.5 2133 732.5 855.5 

0.3 ∞ 3727 812 1599 591 725 

0.4 ∞ 3024.5 610 1238.5 506 670 

0.5 ∞ 2430.5 530 972.5 427.5 500.5 

0.6 ∞ 2142.5 544.5 832.5 368.5 397 

0.7 ∞ 2013.5 630 841.5 283.5 258.5 

0.8 15 1782.5 559 636.5 332.5 254.5 

0.9 1 1711 474.5 476 434.5 326 

1.0 1 1428.5 445 400 341 242.5 
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Figure 4.5.  Wholesaler’s cost values for the two different objectives. 
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Figure 4.6.  Group total cost values for the two different objectives. 

 

In Figure 4.5, we observe that there is a difference in the wholesaler’s cost values for 

wsl between 0.0 and 0.8 (i.e., the minimum cost for the wholesaler can be obtained and the 

minimum group total cost can be obtained by optimizing the wholesaler’s sat). In Figure 

4.6, one can observe a difference in the group total cost values too. We conclude that we 

can obtain lower GTC values by sacrificing the objective of minimizing the wholesaler’s 

total cost for wsl values less than or equal to 0.8. 

 

Table 4.6.  The percent changes in the optimum WTC  and in the optimum GTC. 

Rwsl  

Dwsl  

Fwsl  

Wsat  

for 

Obj. 1 

Wsat  

for 

Obj. 2 

Change in WTC  

(%) 

Change in GTC  

(%) 

0.0 1 ∞ 35.83 -51.04 

0.1 1 ∞ 23.16 -49.47 

0.2 1 ∞ 20.95 -47.07 

0.3 1 ∞ 16.55 -40.00 

0.4 1 ∞ 10.19 -33.59 

0.5 1 ∞ 7.34 -27.43 

0.6 1 ∞ 9.04 -19.64 

0.7 1 ∞ 30.87 -10.85 

0.8 1 15 12.65 -10.49 

0.9 1 1 0.00 0.00 

1.0 1 1 0.00 0.00 
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Table 4.6 presents the percent changes in the optimum wholesaler’s total cost (
WTC ) 

and in the optimum group total cost (GTC) for each wsl value when we change the 

objective of the minimization problem from “optimizing the wholesaler’s total cost” to 

“optimizing group total cost by optimizing the wholesaler’s sat”. For example, when wsl 

values for the retailer, the distributor and the factory are equal to zero, we can reduce 

group total cost by 51.04% and this reduction results in a 35.83% increase in the 

wholesaler’s total cost. The greatest reduction in the group total cost (-51.04%) is achieved 

for wsl = 0.0. We can reduce the group total cost by only 10.49% for wsl = 0.8. However, 

for the same wsl value, we need to increase the wholesaler’s total cost by 12.65% to be 

able to achieve that improvement. 

 

4.1.3.  Observations at the Distributor Echelon 

 

When we minimize the distributor’s total cost, the optimum value of sat for the 

distributor becomes one week for all wsl values of the other three echelons (Table 4.7). 

 

Table 4.7.  Optimum sat and corresponding cost values when we optimize the 

distributor’s total cost. 

Rwsl  

Wwsl  

Fwsl  

Optimum 

Dsat  

(week) 

GTC  ($) RTC  ($) WTC  ($) 
DTC  ($) FTC  ($) 

0.0 1 47432 3788.5 14884 14697 14062.5 

0.1 1 23344.5 2279.5 7867 6976.5 6221.5 

0.2 1 13525 1561.5 4594.5 4091 3278 

0.3 1 8473.5 1106.5 2794.5 2625.5 1947 

0.4 1 5732 838.5 1930 1804.5 1159 

0.5 1 4148.5 705 1301 1310.5 832 

0.6 1 3220 619.5 890 1045 665.5 

0.7 1 2614.5 592 713.5 781 528 

0.8 1 2221.5 538 622.5 609 452 

0.9 1 1800.5 482.5 495 477 346 

1.0 1 1428.5 445 400 341 242.5 
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When we minimize group total cost by trying different sat values for the distributor, 

the optimum value of sat becomes equal to infinity for wsl values between 0.1 and 0.7 

(Table 4.8). Unexpectedly, the optimum value of sat is equal to one week for wsl = 0.0. 

 

Table 4.8.  Optimum sat and corresponding cost values when we optimize group 

total cost by trying different sat values for the distributor. 

Rwsl  

Wwsl  

Fwsl  

Optimum 

Dsat  

(week) 

GTC  ($) RTC  ($) WTC  ($) 
DTC  ($) FTC  ($) 

0.0 1 47432 3788.5 14884 14697 14062.5 

0.1 ∞ 20742.5 1741.5 4851.5 12464 1685.5 

0.2 ∞ 11075 1205 3006 5996.5 867.5 

0.3 ∞ 6463.5 876.5 1959.5 3136.5 491 

0.4 ∞ 4472 703 1406 2037.5 325.5 

0.5 ∞ 3318 595 1031.5 1430.5 261 

0.6 ∞ 2671.5 524 807.5 1114.5 225.5 

0.7 ∞ 2338 535.5 693 906.5 203 

0.8 1 2221.5 538 622.5 609 452 

0.9 1 1800.5 482.5 495 477 346 

1.0 1 1428.5 445 400 341 242.5 
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Figure 4.7.  Distributor’s cost values for the two different objectives. 
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Figure 4.8.  Group total cost values for the two different objectives. 

 

In Figure 4.7, we observe that there is a difference in the distributor’s cost values for 

wsl between 0.1 and 0.7 under two different objectives (i.e., the minimum cost for the 

distributor can be obtained and the minimum group total cost can be obtained by 

optimizing the distributor’s sat). In Figure 4.8, one can observe a difference in the group 

total cost values too. We conclude that we can obtain lower GTC values by sacrificing the 

objective of minimizing the distributor’s total cost for wsl values between 0.1 and 0.7. 

 

Table 4.9.  The percent changes in the optimum DTC  and in the optimum GTC. 

Rwsl  

Wwsl  

Fwsl  

Dsat  

for 

Obj. 1 

Dsat  

for 

Obj. 2 

Change in DTC  

(%) 

Change in GTC  

(%) 

0.0 1 1 0.00 0.00 

0.1 1 ∞ 78.66 -11.15 

0.2 1 ∞ 46.58 -18.11 

0.3 1 ∞ 19.46 -23.72 

0.4 1 ∞ 12.91 -21.98 

0.5 1 ∞ 9.16 -20.02 

0.6 1 ∞ 6.65 -17.03 

0.7 1 ∞ 16.07 -10.58 

0.8 1 1 0.00 0.00 

0.9 1 1 0.00 0.00 

1.0 1 1 0.00 0.00 
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In Table 4.9, we present the percent changes in the optimum distributor’s total cost 

( DTC ) and in the optimum group total cost (GTC) for each wsl value when we change the 

objective of the minimization problem from “optimizing the distributor’s total cost” to 

“optimizing group total cost by optimizing the distributor’s sat”. For example, when wsl 

values for the retailer, the wholesaler and the factory are equal to 0.1, we can reduce group 

total cost by 11.15% and this reduction results in a 78.66% increase in the distributor’s 

optimal total cost. The greatest reduction in the group total cost (-23.72%) is achieved for 

wsl = 0.3. 

 

4.1.4.  Observations at the Factory Echelon 

 

When we minimize the factory’s total cost, the optimum value of sat becomes equal 

to one week for all wsl values of the other three echelons. 

 

Table 4.10.  Optimum sat and corresponding cost values when we optimize the 

factory’s total cost. 

Rwsl  

Wwsl  

Dwsl  

Optimum 

Fsat  

(week) 

GTC  ($) RTC  ($) WTC  ($) 
DTC  ($) FTC  ($) 

0.0 1 93486 3861 16105 41332 32188 

0.1 1 40876.5 2346 8135 17659 12736.5 

0.2 1 21776 1582.5 4785.5 8602.5 6805.5 

0.3 1 12612.5 1163 2880.5 4730.5 3838.5 

0.4 1 8030 875 1947 2827 2381 

0.5 1 5410 713.5 1345 1768 1583.5 

0.6 1 3879.5 630 920 1238 1091.5 

0.7 1 2961 603.5 728.5 831 798 

0.8 1 2371 545 635.5 642.5 548 

0.9 1 1835.5 485 498.5 482 370 

1.0 1 1428.5 445 400 341 242.5 

 

When we minimize group total cost by trying different sat values for the factory, the 

optimum values of sat follow a different pattern. The optimum value of sat is one week 

when wsl values range from 0.0 and 1.0. Making smooth -almost no- adjustments 
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especially for lower values of wsl minimizes GTC for the retailer, the wholesaler, and the 

distributor. However, making adjustments in a one-week period for 0.0 ≤ wsl ≤ 1.0 

minimizes GTC for the factory echelon. 

 

Table 4.11.  Optimum sat and corresponding cost values when we optimize group 

total cost by trying different sat values for the factory. 

Rwsl  

Wwsl  

Dwsl  

Optimum 

Fsat  

(week) 

GTC  ($) RTC  ($) WTC  ($) 
DTC  ($) FTC  ($) 

0.0 1 93486 3861 16105 41332 32188 

0.1 1 40876.5 2346 8135 17659 12736.5 

0.2 1 21776 1582.5 4785.5 8602.5 6805.5 

0.3 1 12612.5 1163 2880.5 4730.5 3838.5 

0.4 1 8030 875 1947 2827 2381 

0.5 1 5410 713.5 1345 1768 1583.5 

0.6 1 3879.5 630 920 1238 1091.5 

0.7 1 2961 603.5 728.5 831 798 

0.8 1 2371 545 635.5 642.5 548 

0.9 1 1835.5 485 498.5 482 370 

1.0 1 1428.5 445 400 341 242.5 
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Figure 4.9.  Factory’s cost values for the two different objectives. 
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Figure 4.10.  Group total cost values for the two different objectives. 

 

For the factory echelon, the two different objectives have the same effect on costs for 

wsl values between 0.0 and 1.0. 

 

Table 4.12.  The percent changes in the optimum FTC  and in the optimum GTC. 

Rwsl  

Wwsl  

Dwsl  

Fsat  

for 

Obj. 1 

Fsat  

for 

Obj. 2 

Change in FTC  

(%) 

Change in GTC  

(%) 

0.0 1 1 0.00 0.00 

0.1 1 1 0.00 0.00 

0.2 1 1 0.00 0.00 

0.3 1 1 0.00 0.00 

0.4 1 1 0.00 0.00 

0.5 1 1 0.00 0.00 

0.6 1 1 0.00 0.00 

0.7 1 1 0.00 0.00 

0.8 1 1 0.00 0.00 

0.9 1 1 0.00 0.00 

1.0 1 1 0.00 0.00 
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4.2.  Optimizing Desired Inventory 

 

Desired Inventory (I*) is the target inventory level that a participant tries to maintain 

throughout the game. Normally, we expect I* to be zero because if EI is zero for an 

echelon in a simulated week, that echelon produces no costs in that week. However, a 

positive desired inventory level might decrease the associated costs in the presence of non-

optimal decision parameter values used by the other decision makers in the game. These 

decision parameters can be listed as stock adjustment time (sat) and weight of supply line 

(wsl). Non-optimal values of these parameters can potentially cause oscillations in the 

inventory and backlog levels. In The Beer Game, because of the asymmetry in the cost 

function, it is usually less costly to have a positive on-hand inventory than having a 

backlog. 

 

In this sub-section, we present three different tables: 

 

(i) The first table displays parameters and related cost values when our objective is to 

minimize the selected echelon’s cost. First column gives wsl values used by the other 

three echelons. Second column gives optimum I* values for the echelon of concern. 

In the third column, we give group total cost values. In the fourth, fifth, sixth, and 

seventh columns, we present individual total cost values of the echelons. 

(ii) The second table displays parameters and related cost values when we optimize 

group total cost by trying different I* values for the echelon of concern. 

(iii)The third table compares the results presented in the first and second tables. First 

column gives wsl values used by the other three echelons. The second column gives 

optimum I* values when we minimize the cost of the echelon of concern. The third 

column presents optimum I* values when we minimize group total cost by trying 

different I* values for the echelon of concern. In the fourth column, we present the 

percentage increase in the total cost value of the echelon of concern when we change 

the objective from minimizing the cost of echelon of concern to minimizing GTC. 

Finally, in the fifth column, we present the percentage decrease in GTC when we 

change the objective from minimizing the cost of echelon of concern to minimizing 

GTC. 
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4.2.1.  Observations at the Retailer Echelon 

 

When we minimize the retailer’s total cost, the average optimum value of I* for the 

retailer becomes 17.55 cases for 0.0 ≤ wsl ≤ 1.0 (Table 4.13). In obtaining the optimum I* 

values, we limit the search interval to [-50, 50] cases. We observe that the minimum I* 

level is 15 cases and it is obtained when wsl is 0.3, 0.9, and 1.0. Besides this, the maximum 

I* level is 22 cases and it is obtained when wsl is 0.4. Note that the optimum I* values do 

not follow a regular pattern; there is no clear relationship between wsl values of the other 

three echelons and the optimum I* values of the retailer. 

 

Table 4.13.  Optimum I* and corresponding cost values when we optimize the 

retailer’s total cost. 

Wwsl  

Dwsl  

Fwsl  

Optimum 


RI  

(case) 

GTC  ($) RTC  ($) WTC  ($) 
DTC  ($) FTC  ($) 

0.0 20 23825 468.5 3817 10728 8811.5 

0.1 18 13982 456.5 2287.5 6477 4761 

0.2 16 8769.5 445 1505 3960 2859.5 

0.3 15 5845.5 429.5 1017.5 2592.5 1806 

0.4 22 4564.5 406.5 814.5 1879 1464.5 

0.5 20 3163 381.5 641 1142.5 998 

0.6 19 2419 375.5 556.5 780.5 706.5 

0.7 17 2069 346.5 526.5 626.5 569.5 

0.8 16 1752 326 489.5 517.5 419 

0.9 15 1434 340.5 409 389.5 295 

1.0 15 1263 343 370 315 235 
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Figure 4.11.  Dynamics of EI levels of the four echelons when wslW,D,F = 0 and 



RI  = 20. 

 

When we minimize group total cost by trying different I* values for the retailer, the 

average optimum value of I* for the retailer becomes -199.5 cases for 0.0 ≤ wsl ≤ 0.3 and 

12.43 cases for 0.4 ≤ wsl ≤ 1.0 (Table 4.14). In obtaining the optimum I* values, we 

limited the search interval to [-300, 300] cases. We observe that the minimum I* level is 

-200 cases and it is obtained when wsl is 0.2 and 0.3. Besides this, the maximum I* level is 

17 cases and it is obtained when wsl is 0.8. 

 

Although the need to carry backlog (i.e., negative desired inventory level) does not 

exactly correspond to the case where retailer makes no adjustments (i.e., sat = ∞), there 

still are similarities. By aiming to make its own net inventory negative, retailer aims to 

prevent the other three echelons’ net inventories go below zero. 
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Table 4.14.  Optimum I* and corresponding cost values when we optimize group 

total cost by trying different I* values for the retailer. 

Wwsl  

Dwsl  

Fwsl  

Optimum 


RI  

(case) 

GTC  ($) RTC  ($) WTC  ($) 
DTC  ($) FTC  ($) 

0.0 -199 4271.5 3336 337 322.5 276 

0.1 -199 4270 3336 337 321 276 

0.2 -200 4270 3338 334 322 276 

0.3 -200 4269 3338 334 321 276 

0.4 4 4072 489 773 1681.5 1128.5 

0.5 12 3062.5 390.5 627 1095 950 

0.6 13 2383 394 539.5 779 670.5 

0.7 11 2045 375.5 509 617.5 543 

0.8 17 1750.5 332.5 486 514.5 417.5 

0.9 15 1434 340.5 409 389.5 295 

1.0 15 1263 343 370 315 235 

 

 

Figure 4.12.  Dynamics of EI levels of the four echelons when wslW,D,F = 0 and 



RI  = -199. 
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Figure 4.13.  Retailer’s cost values for the two different objectives. 
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Figure 4.14.  Group total cost values for the two different objectives. 

 

In Figure 4.13, we observe that there is a significant difference in the retailer’s cost 

values for wsl between 0.0 and 0.3 under two different objectives (i.e., the minimum cost 

for the retailer can be obtained and the minimum group total cost can be obtained by 

optimizing the retailer’s I*). In Figure 4.14, one can observe a significant difference in the 

group total cost values for the same range too. There are also relatively small differences 
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that are not visible between the group total cost values obtained under the two different 

objectives (see Table 4.15). We conclude that we can obtain lower GTC values by 

sacrificing the objective of minimizing the retailer’s total cost for wsl values between 0.0 

and 0.3. 

 

In Table 4.15, we present the percent changes in the optimum retailer’s total cost 

( RTC ) and in the optimum group total cost (GTC) for each wsl value when we change the 

objective of the minimization problem from “optimizing the retailer’s total cost” to 

“optimizing group total cost by optimizing the retailer’s I*”. For example, when wsl values 

for the wholesaler, the distributor, and the factory are equal to 0.0, we can reduce group 

total cost by 82.07% and this reduction results in a 612.06% increase in the retailer’s total 

cost. The greatest reduction in the group total cost (-82.07%) is achieved for wsl = 0.0. 

 

Table 4.15.  The percent changes in the optimum RTC  and in the optimum GTC. 

Wwsl  

Dwsl  

Fwsl  



RI  

for 

Obj. 1 



RI  

For 

Obj. 2 

Change in RTC  

(%) 

Change in GTC  

(%) 

0.0 20 -199 612.06 -82.07 

0.1 18 -199 630.78 -69.46 

0.2 16 -200 650.11 -51.31 

0.3 15 -200 677.18 -26.97 

0.4 22 4 20.30 -10.79 

0.5 20 12 2.36 -3.18 

0.6 19 13 4.93 -1.49 

0.7 17 11 8.37 -1.16 

0.8 16 17 1.99 -0.09 

0.9 15 15 0.00 0.00 

1.0 15 15 0.00 0.00 

 

4.2.2.  Observations at the Wholesaler Echelon 

 

When we minimize the wholesaler’s total cost, the average optimum value of I* for 

the wholesaler becomes 30.73 cases for 0.0 ≤ wsl ≤ 1.0 (Table 4.16). In obtaining the 

optimum I* values, we limit the search interval to [-50, 50] cases. We observe that the 
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minimum I* level is 21 cases and it is obtained when wsl = 1.0. Besides this, the maximum 

I* level is 42 cases and it is obtained when wsl = 0.0. 

 

When we minimize group total cost by trying different I* values for the wholesaler, 

the average optimum value of I* for the wholesaler becomes 40.1 cases for 0.0 ≤ wsl ≤ 1.0 

(Table 4.17). In obtaining the optimum I* values, we limit the search interval to 

[-300, 300] cases. We observe that the minimum I* level is 28 cases and it is obtained 

when wsl is 0.7 and 1.0. Besides this, the maximum I* level is 55 cases and it is obtained 

when wsl = 0.0 and 0.1. 

 

Table 4.16.  Optimum I* and corresponding cost values when we optimize the 

wholesaler’s total cost. 

Rwsl  

Dwsl  

Fwsl  

Optimum 


WI  

(case) 

GTC  ($) RTC  ($) WTC  ($) 
DTC  ($) FTC  ($) 

0.0 42 7506 693.5 1276.5 1686 3850 

0.1 41 5847 443 900 1481.5 3022.5 

0.2 33 5010 356 661.5 1208 2784.5 

0.3 31 3893.5 288 584 888.5 2133 

0.4 31 2801 250.5 480 706 1364.5 

0.5 31 2142.5 204.5 384 609.5 944.5 

0.6 30 1648.5 148 371 466.5 663 

0.7 30 1370 141.5 347.5 434 447 

0.8 25 1244.5 177.5 350.5 379.5 337 

0.9 23 1130 195 351.5 323 260.5 

1.0 21 1045 203 337 288.5 216.5 
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Table 4.17.  Optimum I* and corresponding cost values when we optimize group 

total cost by trying different I* values for the wholesaler. 

Rwsl  

Dwsl  

Fwsl  

Optimum 


WI  

(case) 

GTC  ($) RTC  ($) WTC  ($) 
DTC  ($) FTC  ($) 

0.0 55 4845 628 1420.5 1807 989.5 

0.1 55 3742 436.5 1023 1420 862.5 

0.2 54 3261.5 360 877.5 1087.5 936.5 

0.3 52 2880.5 289 781.5 875 935 

0.4 44 2598.5 269 622 708 999.5 

0.5 37 2079 192 471 531.5 884.5 

0.6 29 1633.5 148 378 461.5 646 

0.7 28 1318.5 150 356.5 399.5 412.5 

0.8 30 1156.5 135 362 349.5 310 

0.9 29 1068.5 140 356 314 258.5 

1.0 28 1004 142 343.5 286 232.5 
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Figure 4.15.  Wholesaler’s cost values for the two different objectives. 
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Figure 4.16.  Group total cost values for the two different objectives. 

 

In Figure 4.15, we observe that there is a difference in the wholesaler’s cost values 

for wsl between 0.0 and 0.5 under two different objectives (i.e., the minimum cost for the 

wholesaler can be obtained and the minimum group total cost can be obtained by 

optimizing the wholesaler’s I*). In Figure 4.16, one can observe a significant difference in 

the group total cost values for wsl between 0.0 and 0.3. There are also relatively small 

differences that are not visible (see Table 4.18). We conclude that we can effectively 

obtain lower GTC values by sacrificing the objective of minimizing the wholesaler’s total 

cost for wsl values between 0.0 and 0.3. In addition, we can also reduce GTC for 

0.4 ≤ wsl ≤ 1.0. 

 

In Table 4.18, we present the percent changes in the optimum wholesaler’s total cost 

( WTC ) and in the optimum group total cost (GTC) for each wsl value when we change the 

objective of the minimization problem from “optimizing the wholesaler’s total cost” to 

“optimizing group total cost by optimizing the wholesaler’s I*”. For example, when wsl 

values for the retailer, the distributor, and the factory are equal to 0.0, we can reduce group 

total cost by 35.45% and this reduction results in a 11.28% increase in the wholesaler’s 

optimal total cost. The greatest reduction in the group total cost (-36.00%) is achieved for 

wsl = 0.1. 
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Table 4.18.  The percent changes in the optimum 
WTC  and in the optimum GTC. 

Rwsl  

Dwsl  

Fwsl  



WI  

for 

Obj. 1 



WI  

for 

Obj. 2 

Change in 
WTC  

(%) 

Change in GTC  

(%) 

0.0 42 55 11.28 -35.45 

0.1 41 55 13.67 -36.00 

0.2 33 54 32.65 -34.90 

0.3 31 52 33.82 -26.02 

0.4 31 44 29.58 -7.23 

0.5 31 37 22.66 -2.96 

0.6 30 29 1.89 -0.91 

0.7 30 28 2.59 -3.76 

0.8 25 30 3.28 -7.07 

0.9 23 29 1.28 -5.44 

1.0 21 28 1.93 -3.92 

 

4.2.3.  Observations at the Distributor Echelon 

 

When we minimize the distributor’s total cost, the average optimum value of I* for 

the distributor becomes 74.45 cases for 0.0 ≤ wsl ≤ 1.0 (Table 4.19). In obtaining the 

optimum I* values, we limit the search interval to [-300, 300] cases. We observe that the 

minimum I* level is one case of beer and it is obtained when wsl = 1.0. Besides this, the 

maximum I* level is 217 cases and it is obtained when wsl = 0.0. 

 

When we minimize group total cost by trying different I* values for the distributor, 

the average optimum value of I* for the distributor becomes 105.64 cases for 

0.0 ≤ wsl ≤ 1.0 (Table 4.20). In obtaining the optimum I* values, we limit the search 

interval to [-400, 400] cases. We observe that the minimum I* level is 32 cases and it is 

obtained when wsl is 1.0. Besides this, the maximum I* level is 372 cases and it is obtained 

when wsl is 0.0. 
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Table 4.19.  Optimum I* and corresponding cost values when we optimize the 

distributor’s total cost. 

Rwsl  

Wwsl  

Fwsl  

Optimum 


DI  

(case) 

GTC  ($) RTC  ($) WTC  ($) 
DTC  ($) FTC  ($) 

0.0 217 18059.5 1659 3877.5 4037 8486 

0.1 145 11073.5 948.5 2405.5 2669.5 5050 

0.2 114 7826 615.5 1606.5 2069.5 3534.5 

0.3 89 5495.5 459.5 924 1583.5 2528.5 

0.4 74 3903.5 360.5 597.5 1190 1755.5 

0.5 58 2802.5 292.5 438 934.5 1137.5 

0.6 48 2052 262.5 345 730.5 714 

0.7 31 1746.5 303 340.5 558 545 

0.8 27 1455 297 300.5 478 379.5 

0.9 15 1460.5 374 357 415.5 314 

1.0 1 1418.5 440 396 338 244.5 

 

Table 4.20.  Optimum I* and corresponding cost values when we optimize group 

total cost by trying different I* values for the distributor. 

Rwsl  

Wwsl  

Fwsl  

Optimum 


DI  

(case) 

GTC  ($) RTC  ($) WTC  ($) 
DTC  ($) FTC  ($) 

0.0 372 16262 1697 3129.5 5876 5559.5 

0.1 253 10696.5 978.5 1895.5 4067 3755.5 

0.2 138 7791.5 637.5 1312 2351 3491 

0.3 92 5490.5 462.5 897.5 1600 2530.5 

0.4 73 3897 360 602.5 1192 1742.5 

0.5 43 2730 285 440 1000 1005 

0.6 43 2037.5 268 336.5 740.5 692.5 

0.7 41 1575 226 249.5 583 516.5 

0.8 37 1286.5 207.5 199 492 388 

0.9 38 1118.5 190 162.5 480 286 

1.0 32 1053 216 172.5 420.5 244 
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Figure 4.17.  Distributor’s cost values for the two different objectives. 
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Figure 4.18.  Group total cost values for the two different objectives. 

 

In Figure 4.17, we observe that there is a significant difference in the distributor’s 

total cost values for wsl between 0.0 and 0.2 under two different objectives (i.e., the 

minimum cost for the distributor can be obtained and the minimum group total cost can be 

obtained by optimizing the distributor’s I*). In Figure 4.18, one can observe some 

differences in the group total cost values. There are also relatively small differences that 
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are not visible in the figure (see Table 4.21 for these differences). Different than the 

retailer and wholesaler echelons, we obtain significantly different I* values for the 

distributor echelon under the two different objectives even for wsl values higher than or 

equal to 0.7. 

 

Table 4.21.  The percent changes in the optimum DTC  and in the optimum GTC. 

Rwsl  

Wwsl  

Fwsl  



DI  

for 

Obj. 1 



DI  

for 

Obj. 2 

Change in DTC  

(%) 

Change in GTC  

(%) 

0.0 217 372 45.55 -9.95 

0.1 145 253 52.35 -3.40 

0.2 114 138 13.60 -0.44 

0.3 89 92 1.04 -0.09 

0.4 74 73 0.17 -0.17 

0.5 58 43 7.01 -2.59 

0.6 48 43 1.37 -0.71 

0.7 31 41 4.48 -9.82 

0.8 27 37 2.93 -11.58 

0.9 15 38 15.52 -23.42 

1.0 1 32 24.41 -25.77 

 

In Table 4.21, we present the percent changes in the optimum distributor’s total cost 

( DTC ) and in the optimum group total cost (GTC) for each wsl value when we change the 

objective of the minimization problem from “optimizing the distributor’s total cost” to 

“optimizing group total cost by optimizing the distributor’s I*”. For example, when wsl 

values for the retailer, the wholesaler, and the factory are equal to 0.0, we can reduce group 

total cost by 9.95% and this reduction results in a 45.55% increase in the distributor’s 

optimal total cost. Surprisingly, the greatest reduction in the group total cost (-25.77%) is 

achieved for wsl = 1.0. 

 

4.2.4.  Observations at the Factory Echelon 

 

When we minimize the factory’s total cost, the average optimum value of I* for the 

factory becomes 331 cases for 0.0 ≤ wsl ≤ 0.4 and -31 cases for 0.5 ≤ wsl ≤ 1.0 (Table 
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4.22). In obtaining the optimum I* values, we limit the search interval to [-1000, 1000] 

cases. We observe that the minimum I* level is -74 cases and it is obtained when wsl = 0.6. 

Besides this, the maximum I* level is 855 cases and it is obtained when wsl = 0.0. 

 

Table 4.22.  Optimum I* and corresponding cost values when we optimize the 

factory’s total cost. 

Rwsl  

Wwsl  

Dwsl  

Optimum 


FI  

(case) 

GTC  ($) RTC  ($) WTC  ($) 
DTC  ($) FTC  ($) 

0.0 855 48466 3136 10185.5 17762.5 17382 

0.1 413 26289.5 1941.5 5356 9848.5 9143.5 

0.2 224 16224.5 1240 3222 6209.5 5553 

0.3 111 10421.5 797.5 2094 4035.5 3494.5 

0.4 52 7037.5 604 1608.5 2643.5 2181.5 

0.5 -66 5612 791 1429 1917 1475 

0.6 -74 4175.5 719 1035.5 1437.5 983.5 

0.7 -37 2992 627.5 789 945 630.5 

0.8 -14 2390 559 634 664.5 532.5 

0.9 5 1779.5 471 484 463 361.5 

1.0 0 1428.5 445 400 341 242.5 

 

When we minimize group total cost by trying different I* values for the factory, the 

average optimum value of I* for the factory becomes 228.55 cases for 0.0 ≤ wsl ≤ 1.0 

(Table 4.23). In obtaining the optimum I* values, we limit the search interval to [-2000, 

2000] cases. We observe that the minimum I* level is 18 cases and it is obtained when 

wsl = 1.0. Besides this, the maximum I* level is 1050 cases and it is obtained when 

wsl = 0.0. 
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Table 4.23.  Optimum I* and corresponding cost values when we optimize group 

total cost by trying different I* values for the factory. 

Rwsl  

Wwsl  

Dwsl  

Optimum 


FI  

(case) 

GTC  ($) RTC  ($) WTC  ($) 
DTC  ($) FTC  ($) 

0.0 1050 47684.5 3136 10359 15592.5 18597 

0.1 502 25424 1941.5 5479.5 8493.5 9509.5 

0.2 329 15678 1240 3350.5 4909.5 6178 

0.3 252 10007.5 833 2131.5 2615.5 4427.5 

0.4 127 6715 643.5 1289 2105.5 2677 

0.5 67 4688.5 492 885 1540.5 1771 

0.6 61 3466.5 457 651 945 1413.5 

0.7 43 2739.5 449.5 580.5 659 1050.5 

0.8 33 2097.5 442.5 498.5 480.5 676 

0.9 32 1591 368 360 308.5 554.5 

1.0 18 1325 370 325 266 364 
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Figure 4.19.  Factory’s cost values for the two different objectives. 
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Figure 4.20.  Group total cost values for the two different objectives. 

 

In Figure 4.19 and Figure 4.20, we observe that there are some differences in the 

factory’s total cost values and GTC values under two different objectives (i.e., the 

minimum cost for the factory can be obtained and the minimum group total cost can be 

obtained by optimizing the factory’s I*). We cannot change GTC values by optimizing the 

factory’s sat value. However, we can reduce GTC by optimizing I* values. 

 

Table 4.24.  The percent changes in the optimum FTC  and in the optimum GTC. 

Rwsl  

Wwsl  

Dwsl  



FI  

for 

Obj. 1 



FI  

for 

Obj. 2 

Change in FTC  

(%) 

Change in GTC  

(%) 

0.0 855 1050 6.99 -1.61 

0.1 413 502 4.00 -3.29 

0.2 224 329 11.26 -3.37 

0.3 111 252 26.70 -3.97 

0.4 52 127 22.71 -4.58 

0.5 -66 67 20.07 -16.46 

0.6 -74 61 43.72 -16.98 

0.7 -37 43 66.61 -8.44 

0.8 -14 33 26.95 -12.24 

0.9 5 32 53.39 -10.59 

1.0 0 18 50.10 -7.25 
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In Table 4.24, we present the percent changes in the optimum factory’s total cost 

( FTC ) and in the optimum group total cost (GTC) for each wsl value when we change the 

objective of the minimization problem from “optimizing the factory’s total cost” to 

“optimizing group total cost by optimizing the factory’s I*”. For example, when wsl values 

for the retailer, the wholesaler, and the distributor are equal to 0.0, we can reduce group 

total cost by 1.61% and this reduction results in a 6.99% increase in the factory’s optimal 

total cost. The greatest reduction in the group total cost (-16.98%) is achieved for 

wsl = 0.6. 

 

4.3.  Key Observations 

 

In the previous sections of this chapter, the results obtained for each echelon are 

analyzed and presented in an isolated noncomparative fashion. In this section, a 

comparative analysis will be presented. 

 

4.3.1.  Key Observations in Stock Adjustment Time Optimization 

 

When we minimize the retailer’s, the wholesaler’s, the distributor’s, and the factory’s 

total costs, sat equals one week becomes optimal (Table 4.25). 

 

Table 4.25.  Optimum sat values for the retailer, the wholesaler, the distributor, and 

the factory when we minimize their total costs by trying different sat values. 

wsl  Rsat  

(week) 
Wsat  

(week) 
Dsat  

(week) 
Fsat  

(week) 

0.0 1 1 1 1 

0.1 1 1 1 1 

0.2 1 1 1 1 

0.3 1 1 1 1 

0.4 1 1 1 1 

0.5 1 1 1 1 

0.6 1 1 1 1 

0.7 1 1 1 1 

0.8 1 1 1 1 

0.9 1 1 1 1 

1.0 1 1 1 1 
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When we optimize group total cost by trying different sat values for the retailer, the 

wholesaler, and the distributor, we observe that making mild or no adjustments (i.e., they 

take sat as infinity.) for low values of wsl minimizes group total cost. This also means that 

they give orders equal to (or close to) the expected demands of their customers for these 

wsl values. However, taking sat as one week for wsl values between 0.0 and 1.0 for the 

factory minimizes group total cost (Table 4.26). Unlike the other echelons, behaving as 

aggressively as possible for inventory and supply line adjustments still minimizes group 

total cost for the factory when the objective changes from minimizing its echelon’s total 

cost to minimizing group total cost. The main reason behind this behavior is the fact that 

the factory does not have a supplier. The retailer, the wholesaler, and the distributor can 

make their suppliers end with a backlog by making relatively aggressive corrections. 

However, the relatively aggressive corrections of the factory do not have such an impact. 

 

Table 4.26.  Optimum sat values for the retailer, the wholesaler, the distributor, and 

the factory when we minimize group total cost by trying different sat values. 

wsl  Rsat  

(week) 
Wsat  

(week) 
Dsat  

(week) 
Fsat  

(week) 

0.0 ∞ ∞ 1 1 

0.1 ∞ ∞ ∞ 1 

0.2 ∞ ∞ ∞ 1 

0.3 ∞ ∞ ∞ 1 

0.4 ∞ ∞ ∞ 1 

0.5 ∞ ∞ ∞ 1 

0.6 ∞ ∞ ∞ 1 

0.7 16 ∞ ∞ 1 

0.8 16 15 1 1 

0.9 1 1 1 1 

1.0 1 1 1 1 

 

In Table 4.27, we present group total cost values when we minimize group total cost 

by trying different sat values. The sat based optimizations yield the lowest group total cost 

values for most values of the wsl when the wholesaler is the echelon of concern. However, 

when wsl is equal to 0.9, the minimum group total cost value is achieved when the retailer 

is the echelon of concern. In addition, as wsl increases, the differences between maximum 
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and minimum optimum group total cost values obtained for the different echelons of 

concern gets smaller. For example, for wsl equals to 0.0, the maximum group total cost 

value, which is equal to $93,486, is obtained when the factory is the echelon of interest and 

the minimum value, which is equal to $11,785, is obtained when the wholesaler is the 

echelon of interest. The difference between these cost values is $81,701. However, when 

wsl is 1.0, all the group total cost values become the same. 

 

Table 4.27.  Group total cost values when we minimize group total cost for the four 

different echelons of concern by trying different sat values. 

wsl  
GTC  Minimized 

for the Retailer 

($) 

GTC  Minimized 

for the Wholesaler 

($) 

GTC  Minimized 

for the Distributor 

($) 

GTC  Minimized 

for the Factory 

($) 

0.0 15114.5 11785 47432 93486 

0.1 9266 7081.5 20742.5 40876.5 

0.2 5936.5 4781.5 11075 21776 

0.3 4196.5 3727 6463.5 12612.5 

0.4 3298 3024.5 4472 8030 

0.5 2699.5 2430.5 3318 5410 

0.6 2399 2142.5 2671.5 3879.5 

0.7 2129 2013.5 2338 2961 

0.8 1891 1782.5 2221.5 2371 

0.9 1567.5 1711 1800.5 1835.5 

1.0 1428.5 1428.5 1428.5 1428.5 

 

4.3.2.  Key Observations in Desired Inventory Optimization 

 

The optimum values of desired inventory (I*) for all echelons of concern are affected 

from the wsl value of the three identically controlled echelons; the optimum I* values for 

the distributor and the factory echelons are affected more than the optimum I* values for 

the retailer and the wholesaler echelons. The optimum desired inventory (I*) levels for the 

retailer, the wholesaler, the distributor, and the factory when we minimize their total costs 

are presented in Table 4.28. 
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Table 4.28.  Optimum I* values for the retailer, the wholesaler, the distributor, and 

the factory when we minimize their total costs by trying different I* values. 

wsl  


RI  

(case) 



WI  

(case) 



DI  

(case) 



FI  

(case) 

0.0 20 42 217 855 

0.1 18 41 145 413 

0.2 16 33 114 224 

0.3 15 31 89 111 

0.4 22 31 74 52 

0.5 20 31 58 -66 

0.6 19 30 48 -74 

0.7 17 30 31 -37 

0.8 16 25 27 -14 

0.9 15 23 15 5 

1.0 15 21 1 0 

 

The optimum desired inventory (I*) levels for the retailer, the wholesaler, the 

distributor, and the factory when we minimize group total cost are presented in Table 4.29. 

This time, the optimum I* values for the retailer are significantly affected from the changes 

in the wsl values like the distributor and the factory echelons, but the strength of the effect 

on the optimum I* values for the wholesaler still is lower than the other three echelons. 

 

Table 4.29.  Optimum I* values for the retailer, the wholesaler, the distributor, and 

the factory when we minimize group total cost by trying different I* values. 

wsl  


RI  

(case) 



WI  

(case) 



DI  

(case) 



FI  

(case) 

0.0 -199 55 372 1050 

0.1 -199 55 253 502 

0.2 -200 54 138 329 

0.3 -200 52 92 252 

0.4 4 44 73 127 

0.5 12 37 43 67 

0.6 13 29 43 61 

0.7 11 28 41 43 

0.8 17 30 37 33 

0.9 15 29 38 32 

1.0 15 28 32 18 
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In Table 4.30, we present group total cost values when we minimize group total cost 

by trying different desired inventory levels. The I* based optimizations yield the lowest 

group total cost values for most values of the wsl when the wholesaler is the echelon of 

concern. However, for wsl equals to 0.0, the minimum group total cost value is achieved 

when the retailer is the echelon of concern. In addition, as wsl increases, the differences 

between maximum and minimum optimum group total cost values obtained for the 

different echelons of concern gets smaller. For example, for wsl equals to 0.0, the 

maximum group total cost value, which is equal to $47,684.5 is obtained when the factory 

is the echelon of interest and the minimum value, which is equal to $4271.5, is obtained 

when the retailer is the echelon of interest. The difference between these cost values is 

$43,413. However, when wsl is 1.0, all the group total cost values become the same. 

 

Table 4.30.  Group total cost values when we minimize group total cost for the four 

different echelons of concern by trying different desired inventory levels. 

wsl  
GTC  Minimized 

for the Retailer 

($) 

GTC  Minimized 

for the Wholesaler 

($) 

GTC  Minimized 

for the Distributor 

($) 

GTC  Minimized 

for the Factory 

($) 

0.0 4271.5 4845 16262 47684.5 

0.1 4270 3742 10696.5 25424 

0.2 4270 3261.5 7791.5 15678 

0.3 4269 2880.5 5490.5 10007.5 

0.4 4072 2598.5 3897 6715 

0.5 3062.5 2079 2730 4688.5 

0.6 2383 1633.5 2037.5 3466.5 

0.7 2045 1318.5 1575 2739.5 

0.8 1750.5 1156.5 1286.5 2097.5 

0.9 1434 1068.5 1118.5 1591 

1.0 1263 1004 1053 1325 

 

When we compare the group total cost values in Table 4.27 and Table 4.30, we 

observe that keeping desired inventory at a level different than zero in general gives a 

better instance of the anchor-and-adjust ordering policy compared to assigning a value to 

sat that is greater than one week. The only exception of this observation is obtained when 

the retailer is the echelon of concern; for some values of wsl (i.e., wsl = 0.3, wsl = 0.4, and 
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wsl = 0.5), minimizing group total cost by obtaining optimum sat values gives better 

results than obtaining optimum I* values. 
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5.  RESULTS FOR THE EXTENDED SIMULATION TIME 

 

 

In this chapter, we increase the final time of The Beer Game simulations from 36 

weeks to 144 weeks. According to our observations, the dynamics obtained in 36 week 

simulations can remain incomplete that might have an effect on the optimum sat and I* 

values and, as a result, the optimum values may not be valid in the long term. To eliminate 

these potential unwanted effects, a longer simulation time is selected and all experiments 

are re-conducted. The experiments and the corresponding results presented in Chapter 4 

are important because The Beer Game is played for 36 simulated weeks. The experiments 

and the results in this chapter are important because they will either validate or invalidate 

the results presented in Chapter 4 for the long run. 

 

5.1.  Optimizing Stock Adjustment Time 

 

In this section, we repeat the experiments mentioned in Section 4.1 with only a single 

change: the length of the simulation time is 144 weeks instead of 36 weeks. 

 

5.1.1.  Observations at the Retailer Echelon 

 

Similar to the results obtained for the 36 week simulations reported in Section 4.1.1, 

when we minimize the retailer’s total cost, the optimum value of sat for the retailer 

becomes one week for all wsl values, except for wsl = 0.7 (Table 5.1). 

 

When we optimize group total cost by trying different sat values for the retailer, the 

optimum value of sat becomes infinity for wsl values between 0.0 and 0.3. This means that 

the retailer makes no adjustments in this range; he only gives orders equal to the expected 

value of end-customer demand. For 0.4 ≤ wsl ≤ 0.8, the retailer makes milder adjustments, 

except for wsl = 0.5 (see Table 5.2). Similar to the results obtained for the 36 week 

simulations, the retailer makes no adjustments for low values of wsl. 
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Table 5.1.  Optimum sat and corresponding cost values when we optimize the 

retailer’s total cost. 

Wwsl  

Dwsl  

Fwsl  

Optimum 

Rsat  

(week) 

GTC  

($) 
RTC  

($) 
WTC  

($) 
DTC  

($) 
FTC  

($) 

0.0 1 132292 917 9045.5 67051 55278.5 

0.1 1 59150.5 1051 4285.5 26627 27187 

0.2 1 25987.5 1043 2547.5 10729.5 11667.5 

0.3 1 13995.5 1075 1819 5383 5718.5 

0.4 1 10311.5 1237 1759 3838 3477.5 

0.5 1 8704.5 1369 1647 2959 2729.5 

0.6 1 6410 1239 1399 1959.5 1812.5 

0.7 2 3103 812 684 820.5 786.5 

0.8 1 2534.5 654 642.5 680 558 

0.9 1 1595.5 468 429.5 402 296 

1.0 1 1432.5 447 402 341 242.5 

 

 

Figure 5.1.  Dynamics of EI levels of the four echelons when wslW,D,F = 0 and 

satR = 1. 



 68 

Table 5.2.  Optimum sat and corresponding cost values when we optimize group 

total cost by trying different sat values for the retailer. 

Wwsl  

Dwsl  

Fwsl  

Optimum 

Rsat  

(week) 

GTC  

($) 
RTC  

($) 
WTC  

($) 
DTC  

($) 
FTC  

($) 

0.0 ∞ 93127.5 3337 6377.5 43449.5 39963.5 

0.1 ∞ 39964.5 3498 3516 16207.5 16743 

0.2 ∞ 19323.5 3460 1993.5 7216.5 6653.5 

0.3 ∞ 13455.5 3503 1598.5 3719.5 4634.5 

0.4 8 9795.5 1679 1468.5 3154.5 3493.5 

0.5 1 8704.5 1369 1647 2959 2729.5 

0.6 4 5947.5 1394 1250 1693 1610.5 

0.7 3 3076 832 685.5 800 758.5 

0.8 3 2505.5 777 601 625.5 502 

0.9 1 1595.5 468 429.5 402 296 

1.0 1 1432.5 447 402 341 242.5 

 

 

Figure 5.2.  Dynamics of EI levels of the four echelons when wslW,D,F = 0 and 

satR = ∞. 
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Figure 5.3.  Retailer’s cost values for the two different objectives. 
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Figure 5.4.  Group total cost values for the two different objectives. 

 

In Figure 5.3, we observe that there is a difference in the retailer’s cost values for 

0.0 ≤ wsl ≤ 0.4, wsl = 0.6 and, wsl = 0.8 under two different objectives (i.e., the minimum 

cost for the retailer can be obtained and the minimum group total cost can be obtained by 

optimizing the retailer’s sat). In Figure 5.4, one can observe a difference in the group total 

cost values for 0.0 ≤ wsl ≤ 0.2. We conclude that we can obtain lower GTC values by 
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sacrificing the objective of minimizing the retailer’s total cost for all wsl values, except for 

wsl = 0.5, wsl = 0.9 and, wsl = 1.0. Behaviorally, these results are no different than the 

results obtained for the 36 week simulations reported in Section 4.1.1. 

 

Table 5.3.  The percent changes in the optimum RTC  and in the optimum GTC. 

Wwsl  

Dwsl  

Fwsl  

Rsat  

for 

Obj. 1 

Rsat  

for 

Obj. 2 

Change in RTC  

(%) 

Change in GTC  

(%) 

0.0 1 ∞ 263.90 -29.60 

0.1 1 ∞ 232.83 -32.44 

0.2 1 ∞ 231.74 -25.64 

0.3 1 ∞ 225.86 -3.86 

0.4 1 8 35.73 -5.00 

0.5 1 1 0.00 0.00 

0.6 1 4 12.51 -7.22 

0.7 2 3 2.46 -0.87 

0.8 1 3 18.81 -1.14 

0.9 1 1 0.00 0.00 

1.0 1 1 0.00 0.00 

 

Table 5.3 presents the percent changes in the optimum retailer’s total cost ( RTC ) and 

in the optimum group total cost (GTC) for each wsl value when we change the objective of 

the minimization problem from “optimizing the retailer’s total cost” to “optimizing group 

total cost by optimizing the retailer’s sat”. For example, when wsl values for the 

wholesaler, the distributor and the factory are equal to zero, we can reduce group total cost 

by 263.90% and this reduction results in a 29.60% increase in the retailer’s optimal total 

cost. The greatest reduction in the group total cost (-32.44%) is achieved for wsl = 0.1. 

These results are similar to the results obtained for the 36 week simulations reported in 

Section 4.1.1 with an exception; in order to obtain an improvement in GTC values for 

0.0 ≤ wsl ≤ 0.3, a higher percent increase in retailer’s total cost is needed in the 144 week 

simulations. 
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5.1.2.  Observations at the Wholesaler Echelon 

 

When we minimize the wholesaler’s total cost, the optimum value of sat becomes 

equal to infinity for wsl = 0.0. In addition, different than the results obtained for the 36 

week simulations, we observe that making milder adjustments for wsl values between 0.2 

and 0.8 minimizes the wholesaler’s total cost (see Table 5.4). Note that in the 36 week 

simulations, taking sat as one week minimizes the wholesaler’s total cost. 

 

Table 5.4.  Optimum sat and corresponding cost values when we optimize the 

wholesaler’s total cost. 

Rwsl  

Dwsl  

Fwsl  

Optimum 

Wsat  

(week) 

TTC  

($) 
RTC  

($) 
WTC  

($) 
DTC  

($) 
FTC  

($) 

0.0 ∞ 42889.5 11854 8772 7380 14883.5 

0.1 1 62871 4893 6323 22449 29206 

0.2 12 15482 2581 3946.5 2928.5 6026 

0.3 2 16433.5 1773.5 2779 5142 6739 

0.4 12 7681.5 1286 2158 1845.5 2392 

0.5 11 6969 1172.5 1820.5 1692 2284 

0.6 13 5275 1071.5 1506 1258 1439.5 

0.7 14 3120.5 804.5 1061.5 641 613.5 

0.8 10 2288.5 669.5 775.5 471.5 372 

0.9 1 2035.5 576.5 568 502 389 

1.0 1 1432.5 447 402 341 242.5 

 

When we optimize group total cost by trying different sat values for the wholesaler, 

making no stock and supply line adjustments for wsl equal to 0.0 and 0.1 minimizes group 

total cost. For 0.2 ≤ wsl ≤ 0.9, making mild adjustments minimizes group total cost. For 

wsl equal to 1.0, the optimum sat value becomes one week. Different than the results 

obtained for the 36 week simulations, making mild adjustments for 0.2 ≤ wsl ≤ 0.7 

minimizes group total cost. However, in the 36 week simulations, making no adjustments 

(i.e., taking sat as infinity.) minimizes group total cost in this range. 
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Table 5.5.  Optimum sat and corresponding cost values when we optimize group 

total cost by trying different sat values for the wholesaler. 

Rwsl  

Dwsl  

Fwsl  

Optimum 

Wsat  

(week) 

TTC  

($) 
RTC  

($) 
WTC  

($) 
DTC  

($) 
FTC  

($) 

0.0 ∞ 42889.5 11854 8772 7380 14883.5 

0.1 ∞ 24024.5 4479 7126.5 5550.5 6868.5 

0.2 12 15482 2581 3946.5 2928.5 6026 

0.3 13 9831.5 1708.5 3045 2108.5 2969.5 

0.4 12 7681.5 1286 2158 1845.5 2392 

0.5 10 6823.5 1229 1841 1628 2125.5 

0.6 13 5275 1071.5 1506 1258 1439.5 

0.7 14 3120.5 804.5 1061.5 641 613.5 

0.8 14 2228.5 664.5 805.5 422 336.5 

0.9 6 1866.5 585.5 600 397.5 283.5 

1.0 1 1432.5 447 402 341 242.5 
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Figure 5.5.  Wholesaler’s cost values for the two different objectives. 
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Figure 5.6.  Group total cost values for the two different objectives. 

 

In Figure 5.5, we observe that there are some differences in the wholesaler’s cost 

values under two different objectives (i.e., the minimum cost for the wholesaler can be 

obtained and the minimum group total cost can be obtained by optimizing the wholesaler’s 

sat). In Figure 5.6, one can also observe some differences in the group total cost values. 

We conclude that we can obtain lower GTC values by sacrificing the objective of 

minimizing the wholesaler’s total cost for some values of wsl (see Table 5.6). 

 

Table 5.6.  The percent changes in the optimum WTC  and in the optimum GTC. 

Rwsl  

Dwsl  

Fwsl  

Wsat  

for 

Obj. 1 

Wsat  

for 

Obj. 2 

Change in WTC  

(%) 

Change in GTC  

(%) 

0.0 ∞ ∞ 0.00 0.00 

0.1 1 ∞ 12.71 -61.79 

0.2 12 12 0.00 0.0 

0.3 2 13 9.57 -40.17 

0.4 12 12 0.00 0.00 

0.5 11 10 1.13 -2.09 

0.6 13 13 0.00 0.00 

0.7 14 14 0.00 0.00 

0.8 10 14 3.87 -2.62 

0.9 1 6 5.63 -8.30 

1.0 1 1 0.00 0.00 
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Table 5.6 presents the percent changes in the optimum wholesaler’s total cost (
WTC ) 

and in the optimum group total cost (GTC) for each wsl value when we change the 

objective of the minimization problem from “optimizing the wholesaler’s total cost” to 

“optimizing group total cost by optimizing the wholesaler’s sat”. For example, when wsl 

values for the retailer, the distributor and the factory are equal to 0.3, we can reduce group 

total cost by 40.17% and this reduction results in a 9.57% increase in the wholesaler’s 

optimal total cost. The greatest reduction in the group total cost (-61.79%) is achieved for 

wsl = 0.1. 

 

5.1.3.  Observations at the Distributor Echelon 

 

Different than the results obtained for the 36 week simulations reported in Section 

4.1.3, we observe that the optimum value of sat is equal to infinity for 0.0 ≤ wsl ≤ 0.3 when 

we minimize the distributor’s total cost (Table 5.7). Making mild adjustments for wsl 

values between 0.4 and 0.8 minimizes the distributor’s total cost. Similar to the results 

obtained for the 36 week simulations, taking sat as one week for wsl = 0.9 and 1.0 

minimizes the distributor’s total cost. 

 

Table 5.7.  Optimum sat  and corresponding cost values when we optimize the 

distributor’s total cost. 

Rwsl  

Wwsl  

Fwsl  

Optimum 

Dsat  

(week) 

GTC  

($) 
RTC  

($) 
WTC  

($) 
DTC  

($) 
FTC  

($) 

0.0 ∞ 257595.5 12296 197091 37482.5 10726 

0.1 ∞ 78707.5 4302 54908 14774 4723.5 

0.2 ∞ 36617 3409 17379 12942.5 2886.5 

0.3 ∞ 14280.5 1737.5 4963 6223.5 1356.5 

0.4 7 12204 1434 3339.5 4617.5 2813 

0.5 2 9152.5 1359 2431 3129.5 2233 

0.6 12 7072.5 1346.5 1963.5 2703.5 1059 

0.7 7 3388.5 732 923 1181 552.5 

0.8 14 3017 755 879 1024 359 

0.9 1 2168 598 601 556.5 412.5 

1.0 1 1432.5 447 402 341 242.5 



 75 

When we minimize group total cost by trying different sat values for the distributor, 

the optimum value of sat becomes equal to infinity for wsl values between 0.0 and 0.3 

(Table 5.8). For 0.4 ≤ wsl ≤ 0.8, the optimum values of sat correspond to making mild 

adjustments. However, in the 36 week simulations, taking sat as infinity for 0.4 ≤ wsl ≤ 0.7 

minimizes group total cost. 

 

Table 5.8.  Optimum sat and corresponding cost values when we optimize group 

total cost by trying different sat values for the distributor. 

Rwsl  

Wwsl  

Fwsl  

Optimum 

Dsat  

(week) 

GTC  

($) 
RTC  

($) 
WTC  

($) 
DTC  

($) 
FTC  

($) 

0.0 ∞ 257595.5 12296 197091 37482.5 10726 

0.1 ∞ 78707.5 4302 54908 14774 4723.5 

0.2 ∞ 36617 3409 17379 12942.5 2886.5 

0.3 ∞ 14280.5 1737.5 4963 6223.5 1356.5 

0.4 16 12007 1531.5 3430.5 5006 2039 

0.5 2 9152.5 1359 2431 3129.5 2233 

0.6 12 7072.5 1346.5 1963.5 2703.5 1059 

0.7 7 3388.5 732 923 1181 552.5 

0.8 14 3017 755 879 1024 359 

0.9 1 2168 598 601 556.5 412.5 

1.0 1 1432.5 447 402 341 242.5 
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Figure 5.7.  Distributor’s cost values for the two different objectives. 
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Figure 5.8.  Group total cost values for the two different objectives. 

 

In Figure 5.7 and Figure 5.8, we cannot see any difference in the wholesaler’s cost 

values under two different objectives (i.e., the minimum cost for the distributor can be 

obtained and the minimum group total cost can be obtained by optimizing the distributor’s 

sat). We conclude that we cannot reduce GTC by allowing an increase in the distributor’s 

total cost, except for wsl = 0.4 (see Table 5.9). 

 

Table 5.9.  The percent changes in the optimum DTC  and in the optimum GTC. 

Rwsl  

Wwsl  

Fwsl  

Dsat  

for 

Obj. 1 

Dsat  

for 

Obj. 2 

Change in DTC  

(%) 

Change in GTC  

(%) 

0.0 ∞ ∞ 0.00 0.00 

0.1 ∞ ∞ 0.00 0.00 

0.2 ∞ ∞ 0.00 0.00 

0.3 ∞ ∞ 0.00 0.00 

0.4 7 16 8.41 -1.61 

0.5 2 2 0.00 0.00 

0.6 12 12 0.00 0.00 

0.7 7 7 0.00 0.00 

0.8 14 14 0.00 0.00 

0.9 1 1 0.00 0.00 

1.0 1 1 0.00 0.00 
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In Table 5.9, we present the percent changes in the optimum distributor’s cost ( DTC ) 

and in the optimum group total cost (GTC) for each wsl value when we change the 

objective of the minimization problem from “optimizing the distributor’s total cost” to 

“optimizing group total cost by optimizing the distributor’s sat”. For example, when wsl 

values for the retailer, the wholesaler and the factory are equal to 0.4, we can reduce group 

total cost by 1.61% and this reduction results in an 8.41% increase in the distributor’s 

optimal total cost. Note that we can decrease GTC by sacrificing the objective of 

minimizing the distributor’s total cost only for wsl = 0.4. 

 

5.1.4.  Observations at the Factory Echelon 

 

When we minimize the factory’s total cost, the optimum value of sat becomes equal 

to infinity for wsl values between 0.0 and 0.4. Making mild adjustments for 

0.6 ≤ wsl ≤ 0.8 minimizes the factory’s total cost. Note that, when the final simulated time 

is 36 weeks, taking sat as one week for all wsl values minimizes the factory’s total cost. 

 

Table 5.10.  Optimum sat and corresponding cost values when we optimize the 

factory’s total cost. 

Rwsl  

Wwsl  

Dwsl  

Optimum 

Fsat  

(week) 

GTC  

($) 
RTC  

($) 
WTC  

($) 
DTC  

($) 
FTC  

($) 

0.0 ∞ 1580932.5 13742.5 226622 1160268.5 180299.5 

0.1 ∞ 437124.5 4570.5 69860.5 311325 51368.5 

0.2 ∞ 153825 2807 20300.5 110337 20380.5 

0.3 ∞ 55926 1927.5 7393 36517.5 10088 

0.4 ∞ 24726.5 1753 3992.5 11369.5 7611.5 

0.5 1 12321.5 1476.5 2523 3923.5 4398.5 

0.6 7 8645 1177 1751 2707 3010 

0.7 16 6300.5 1066 1410.5 1789 2035 

0.8 9 4354.5 908 1064 1164.5 1218 

0.9 1 2322 628 633.5 586 474.5 

1.0 1 1432.5 447 402 341 242.5 
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Similar to the results obtained for the 36 week simulations reported in Section 4.1.4, 

when we minimize group total cost by trying different sat values for the factory, the 

optimum value of sat becomes one week when wsl values range from 0.0 and 0.3. 

However, making milder adjustments for 0.6 ≤ wsl ≤ 0.8 minimizes group total cost. 

 

Table 5.11.  Optimum sat and corresponding cost values when we optimize group 

total cost by trying different sat values for the factory. 

Rwsl  

Wwsl  

Dwsl  

Optimum 

Fsat  

(week) 

GTC  

($) 
RTC  

($) 
WTC  

($) 
DTC  

($) 
FTC  

($) 

0.0 1 823558 14535 154463 446602 207958 

0.1 1 290018.5 5486 55957 156493 72082.5 

0.2 1 120964 2973.5 18609 62444 36937.5 

0.3 1 49976 2276 7329 21033.5 19337.5 

0.4 2 23623.5 1867.5 3919 8992 8845 

0.5 1 12321.5 1476.5 2523 3923.5 4398.5 

0.6 7 8645 1177 1751 2707 3010 

0.7 16 6300.5 1066 1410.5 1789 2035 

0.8 14 4253.5 879.5 1026 1119.5 1228.5 

0.9 1 2322 628 633.5 586 474.5 

1.0 1 1432.5 447 402 341 242.5 
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Figure 5.9.  Factory’s cost values for the two different objectives. 
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Figure 5.10.  Group total cost values for the two different objectives. 

 

Table 5.12.  The percent changes in the optimum FTC  and in the optimum GTC. 

Rwsl  

Wwsl  

Dwsl  

Fsat  

for 

Obj. 1 

Fsat  

for 

Obj. 2 

Change in FTC  

(%) 

Change in GTC  

(%) 

0.0 ∞ 1 15.34 -47.91 

0.1 ∞ 1 40.32 -33.65 

0.2 ∞ 1 81.24 -21.36 

0.3 ∞ 1 91.69 -10.64 

0.4 ∞ 2 16.21 -4.46 

0.5 1 1 0.00 0.00 

0.6 7 7 0.00 0.00 

0.7 16 16 0.00 0.00 

0.8 9 14 0.86 -2.32 

0.9 1 1 0.00 0.00 

1.0 1 1 0.00 0.00 

 

Different than the results obtained for the 36 week simulations reported in Section 

4.1.4, the two different objectives do not have the same effect on costs for all wsl values. In 

Figure 5.9, we observe that there are some differences in the factory’s cost values under 
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two different objectives (i.e., the minimum cost for the factory can be obtained and the 

minimum group total cost can be obtained by optimizing the factory’s sat) when wsl < 0.4. 

In Figure 5.10, one can also observe some differences in the group total cost values. 

Different than the results obtained for the 36 week simulations, we conclude that we can 

reduce GTC while increasing the factory’s total cost for wsl ≤ 0.4 and wsl = 0.8 (see Table 

5.12). 

 

5.2.  Optimizing Desired Inventory 

 

In this section, we repeat the experiments mentioned in Section 4.2 with only a single 

change: the length of the simulation time is 144 weeks instead of 36 weeks. 

 

5.2.1.  Observations at the Retailer Echelon 

 

When we minimize the retailer’s total cost, the average optimum value of I* for the 

retailer becomes 4.55 cases for 0.0 ≤ wsl ≤ 1.0 (Table 5.13). In obtaining the optimum I* 

values, we limit the search interval to [-50, 50] cases. We observe that the minimum I* 

level is zero cases and it is obtained when wsl is 0.0, 0.9, and 1.0. Besides this, the 

maximum I* level is 13 cases and it is obtained when wsl is 0.5. Similar to the results 

obtained for the 36 week simulations, the optimum I* values do not follow a regular 

pattern; there is no clear relationship between wsl values of the other three echelons and 

the optimum I* values of the retailer. 

 

When we minimize group total cost by trying different I* values for the retailer, the 

average optimum value of I* for the retailer becomes -46.33 cases for 0.0 ≤ wsl ≤ 0.2 and 

6.38 cases for 0.3 ≤ wsl ≤ 1.0 (Table 5.14). In obtaining the optimum I* values, we limited 

the search interval to [-300, 300] cases. We observe that the minimum I* level is -110 

cases and it is obtained when wsl is 0.0. Besides this, the maximum I* level is 26 cases and 

it is obtained when wsl is 0.7. Similar to the results obtained for the 36 week simulations 

reported in Section 4.2.1, the retailer aims to carry backlog for the low values of wsl. 
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Table 5.13.  Optimum I* and corresponding cost values when we optimize the 

retailer’s total cost. 

Wwsl  

Dwsl  

Fwsl  

Optimum 


RI  

(case) 

GTC  

($) 
RTC  

($) 
WTC  

($) 
DTC  

($) 
FTC  

($) 

0.0 0 132292 917 9045.5 67051 55278.5 

0.1 2 59432.5 1034.5 4290.5 26623 27484.5 

0.2 7 25880.5 951.5 2467 10651 11811 

0.3 6 14530 922.5 1824.5 5701 6082 

0.4 11 8879 895 1476 3320 3188 

0.5 13 8184.5 897 1625.5 2910.5 2751.5 

0.6 1 4328 806.5 968.5 1315.5 1237.5 

0.7 8 4079 752.5 1003.5 1219.5 1103.5 

0.8 2 2485.5 622 632 675 556.5 

0.9 0 1595.5 468 429.5 402 296 

1.0 0 1432.5 447 402 341 242.5 

 

 

Figure 5.11.  Dynamics of EI levels of the four echelons when wslW,D,F = 0 and 



RI  = 0. 
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Table 5.14.  Optimum I* and corresponding cost values when we optimize group 

total cost by trying different I* values for the retailer. 

Wwsl  

Dwsl  

Fwsl  

Optimum 


RI  

(case) 

GTC  

($) 
RTC  

($) 
WTC  

($) 
DTC  

($) 
FTC  

($) 

0.0 -110 119727 15083 7726 53540 43378 

0.1 -18 56376.5 3507 4177.5 23836 24856 

0.2 -11 24552 2484 2360 9841.5 9866.5 

0.3 0 13995.5 1075 1819 5383 5718.5 

0.4 11 8879 895 1476 3320 3188 

0.5 10 8115.5 954 1616 2836 2709.5 

0.6 1 4328 806.5 968.5 1315.5 1237.5 

0.7 26 3874.5 1773.5 609 748 744 

0.8 3 2368.5 627 589 629.5 523 

0.9 0 1595.5 468 429.5 402 296 

1.0 0 1432.5 447 402 341 242.5 

 

 

Figure 5.12.  Dynamics of EI levels of the four echelons when wslW,D,F = 0 and 



RI  = -110. 



 83 

Although the need to carry backlog (i.e., negative desired inventory level) does not 

exactly correspond to the case where retailer makes no adjustments (i.e., sat = ∞), there 

still are similarities. By aiming to make its own net inventory negative, retailer aims to 

prevent the other three echelons’ net inventories go below zero. 
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Figure 5.13.  Retailer’s cost values for the two different objectives. 
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Figure 5.14.  Group total cost values for the two different objectives. 
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In Figure 5.13, we observe that there is a significant difference in the retailer’s cost 

values for wsl between 0.0 and 0.2 under two different objectives (i.e., the minimum cost 

for the retailer can be obtained and the minimum group total cost can be obtained by 

optimizing the retailer’s I*). In Figure 5.14, one can observe some differences in the group 

total cost values too. There are also relatively small differences that are not visible between 

the group total cost values obtained under the two different objectives (see Table 5.15). 

 

Table 5.15.  The percent changes in the optimum RTC  and in the optimum GTC. 

Wwsl  

Dwsl  

Fwsl  



RI  

for 

Obj. 1 



RI  

for 

Obj. 2 

Change in RTC  

(%) 

Change in GTC  

(%) 

0.0 0 -110 1544.82 -9.50 

0.1 2 -18 239.00 -5.14 

0.2 7 -11 161.06 -5.13 

0.3 6 0 16.53 -3.68 

0.4 11 11 0.00 0.00 

0.5 13 10 6.35 -0.84 

0.6 1 1 0.00 0.00 

0.7 8 26 135.68 -5.01 

0.8 2 3 0.80 -4.71 

0.9 0 0 0.00 0.00 

1.0 0 0 0.00 0.00 

 

In Table 5.15, we present the percent changes in the optimum retailer’s total cost 

( RTC ) and in the optimum group total cost (GTC) for each wsl value when we change the 

objective of the minimization problem from “optimizing the retailer’s total cost” to 

“optimizing group total cost by optimizing the retailer’s I*”. For example, when wsl values 

for the wholesaler, the distributor, and the factory are equal to 0.0, we can reduce group 

total cost by 9.50% and this reduction results in a 1544.82% increase in the retailer’s 

optimal total cost. The greatest reduction in the group total cost (-9.50%) is achieved for 

wsl = 0.0. However, for this improvement, we have to increase the retailer’s total cost by 

1544.82%. 
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5.2.2.  Observations at the Wholesaler Echelon 

 

When we minimize the wholesaler’s total cost, the average optimum value of I* for 

the wholesaler becomes 15.36 cases for 0.0 ≤ wsl ≤ 1.0 (Table 5.16). In obtaining the 

optimum I* values, we limit the search interval to [-50, 50] cases. We observe that the 

minimum I* level is 0 cases and it is obtained when wsl = 1.0. Besides this, the maximum 

I* level is 40 cases and it is obtained when wsl = 0.0. 

 

Table 5.16.  Optimum I* and corresponding cost values when we optimize the 

wholesaler’s total cost. 

Rwsl  

Dwsl  

Fwsl  

Optimum 


WI  

(case) 

GTC  

($) 
RTC  

($) 
WTC  

($) 
DTC  

($) 
FTC  

($) 

0.0 40 41315 2344.5 5220 11990 21760.5 

0.1 34 31826 1744.5 3916 7741.5 18424 

0.2 31 22128.5 1362 3080 5260.5 12426 

0.3 26 16067.5 1054.5 2169.5 4295 8548.5 

0.4 12 8134.5 916 1466 2002 3750.5 

0.5 8 5957.5 809 1189 1587.5 2372 

0.6 8 4847 722 1043 1370 1712 

0.7 6 3858 677 905 1108 1168 

0.8 3 2852.5 629.5 762 770.5 690.5 

0.9 1 1926 528 567 475 356 

1.0 0 1432.5 447 402 341 242.5 

 

When we minimize group total cost by trying different I* values for the wholesaler, 

the average optimum value of I* for the wholesaler becomes 30.45 cases for 

0.0 ≤ wsl ≤ 1.0 (Table 5.17). In obtaining the optimum I* values, we limit the search 

interval to [-100, 100] cases. We observe that the minimum I* level is 0 cases and it is 

obtained when wsl = 1.0. Besides this, the maximum I* level is 74 cases and it is obtained 

when wsl = 0.0. 
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Table 5.17.  Optimum I* and corresponding cost values when we optimize group 

total cost by trying different I* values for the wholesaler. 

Rwsl  

Dwsl  

Fwsl  

Optimum 


WI  

(case) 

GTC  

($) 
RTC  

($) 
WTC  

($) 
DTC  

($) 
FTC  

($) 

0.0 74 32034.5 2434 7032.5 9303.5 13264.5 

0.1 58 20425.5 1872 5151.5 5723 7679 

0.2 57 13549.5 1453.5 4582.5 3460.5 4053 

0.3 41 10884 1199.5 3125 2702.5 3857 

0.4 28 7678 469 1717 1796 3696 

0.5 27 5026.5 199.5 1603 1296.5 1927.5 

0.6 30 3324.5 148 1976.5 492.5 707.5 

0.7 10 2796 473 1077 638 608 

0.8 8 2358.5 440.5 898.5 539 480.5 

0.9 2 1920.5 501.5 594.5 470.5 354 

1.0 0 1432.5 447 402 341 242.5 
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Figure 5.15.  Wholesaler’s cost values for the two different objectives. 
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Figure 5.16.  Group total cost values for the two different objectives. 

 

In Figure 5.15, we observe that there is a difference in the wholesaler’s cost values 

for wsl between 0.0 and 0.9 under two different objectives (i.e., the minimum cost for the 

wholesaler can be obtained and the minimum group total cost can be obtained by 

optimizing the wholesaler’s I*). In Figure 5.16, one can observe a difference in the group 

total cost values in the same range too. Similar to the results obtained for the 36 week 

simulations reported in Section 4.1.2, we conclude that we can effectively obtain lower 

GTC values by sacrificing the objective of minimizing the wholesaler’s total cost for wsl 

values between 0.0 and 0.8. 

 

In Table 5.18, we present the percent changes in the optimum wholesaler’s total cost 

( WTC ) and in the optimum group total cost (GTC) for each wsl value when we change the 

objective of the minimization problem from “optimizing the wholesaler’s total cost” to 

“optimizing group total cost by optimizing the wholesaler’s I*”. For example, when wsl 

values for the retailer, the distributor, and the factory are equal to 0.0, we can reduce group 

total cost by 22.46% and this reduction results in a 34.72% increase in the wholesaler’s 

optimal total cost. The greatest reduction in the group total cost (-38.77%) is achieved for 

wsl = 0.2. 
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Table 5.18.  The percent changes in the optimum 
WTC  and in the optimum GTC. 

Rwsl  

Dwsl  

Fwsl  



WI  

for 

Obj. 1 



WI  

for 

Obj. 2 

Change in 
WTC  

(%) 

Change in GTC  

(%) 

0.0 40 74 34.72 -22.46 

0.1 34 58 31.55 -35.82 

0.2 31 57 48.78 -38.77 

0.3 26 41 44.04 -32.26 

0.4 12 28 17.12 -5.61 

0.5 8 27 34.82 -15.63 

0.6 8 30 89.50 -31.41 

0.7 6 10 19.01 -27.53 

0.8 3 8 17.91 -17.32 

0.9 1 2 4.85 -0.29 

1.0 0 0 0.00 0.00 

 

5.2.3.  Observations at the Distributor Echelon 

 

When we minimize the distributor’s total cost, the average optimum value of I* for 

the distributor becomes 47.91 cases for 0.0 ≤ wsl ≤ 1.0 (Table 5.19). In obtaining the 

optimum I* values, we limit the search interval to [-300, 300] cases. We observe that the 

minimum I* level is zero cases and it is obtained when wsl = 0.9 and 1.0. Besides this, the 

maximum I* level is 229 cases and it is obtained when wsl = 0.0. 

 

When we minimize group total cost by trying different I* values for the distributor, 

the average optimum value of I* for the distributor becomes 59.73 cases for 0.0 ≤ wsl ≤ 1.0 

(Table 5.20). In obtaining the optimum I* values, we limit the search interval to 

[-300, 300] cases. We observe that the minimum I* level is zero cases and it is obtained 

when wsl = 1.0. Besides this, the maximum I* level is 281 cases and it is obtained when 

wsl = 0.0. 
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Table 5.19.  Optimum I* and corresponding cost values when we optimize the 

distributor’s total cost. 

Rwsl  

Wwsl  

Fwsl  

Optimum 


DI  

(case) 

GTC  

($) 
RTC  

($) 
WTC  

($) 
DTC  

($) 
FTC  

($) 

0.0 229 92499 3382 13029 26078 50010 

0.1 109 48283.5 2112 8158 15119.5 22894 

0.2 93 25499.5 1416 4036.5 9472.5 10574.5 

0.3 32 18417 1372.5 3830.5 6204 7010 

0.4 19 11431 1295 2684.5 3915 3536.5 

0.5 18 7308.5 954 1475.5 2506 2373 

0.6 16 5438 831 1059 1777 1771 

0.7 7 3294.5 621 756 1144 773.5 

0.8 4 2860 640.5 709 876.5 634 

0.9 0 2168 598 601 556.5 412.5 

1.0 0 1432.5 447 402 341 242.5 

 

Table 5.20.  Optimum I* and corresponding cost values when we optimize group 

total cost by trying different I* values for the distributor. 

Rwsl  

Wwsl  

Fwsl  

Optimum 


DI  

(case) 

GTC  

($) 
RTC  

($) 
WTC  

($) 
DTC  

($) 
FTC  

($) 

0.0 281 77278 4447 13407 32186 27238 

0.1 163 43569.5 2159 5903 15226.5 20281 

0.2 84 24779.5 1615 4176.5 10072 8916 

0.3 46 17945.5 1230.5 3002 6480.5 7232.5 

0.4 19 11431 1295 2684.5 3915 3536.5 

0.5 18 7308.5 954 1475.5 2506 2373 

0.6 17 5109 751 991 1782.5 1584.5 

0.7 9 3204 584 708 1247.5 664.5 

0.8 17 2764 427.5 449 1416 471.5 

0.9 3 2085.5 533.5 529 633 390 

1.0 0 1432.5 447 402 341 242.5 

 



 90 

0

5000

10000

15000

20000

25000

30000

35000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TC
D

wslR,W,F

Distributor's Costs

Minimum Distributor's Cost Obtained Minimum Group Total Cost Obtained

 

Figure 5.17.  Distributor’s cost values for the two different objectives. 
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Figure 5.18.  Group total cost values for the two different objectives. 

 

In Figure 5.17, different than the results obtained for the 36 week simulations, we 

observe that there is not a significant difference in the distributor’s cost values for wsl 

between 0.0 and 0.2 under two different objectives (i.e., the minimum cost for the 

distributor can be obtained and the minimum group total cost can be obtained by 

optimizing the distributor’s I*). In Figure 5.18, one can observe some differences in the 
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group total cost values. There are also relatively small differences that are not visible (see 

Table 5.21). 

 

Table 5.21.  The percent changes in the optimum DTC  and in the optimum GTC. 

Rwsl  

Wwsl  

Fwsl  



DI  

for 

Obj. 1 



DI  

for 

Obj. 2 

Change in DTC  

(%) 

Change in GTC  

(%) 

0.0 229 281 23.42 -16.46 

0.1 109 163 0.71 -9.76 

0.2 93 84 6.33 -2.82 

0.3 32 46 4.46 -2.56 

0.4 19 19 0.00 0.00 

0.5 18 18 0.00 0.00 

0.6 16 17 0.31 -6.05 

0.7 7 9 9.05 -2.75 

0.8 4 17 61.55 -3.36 

0.9 0 3 13.75 -3.81 

1.0 0 0 0.00 0.00 

 

In Table 5.21, we present the percent changes in the optimum distributor’s total cost 

( DTC ) and in the optimum group total cost (GTC) for each wsl value when we change the 

objective of the minimization problem from “optimizing the distributor’s total cost” to 

“optimizing group total cost by optimizing the distributor’s I*”. For example, when wsl 

values for the retailer, the wholesaler, and the factory are equal to 0.2, we can reduce group 

total cost by 2.82% and this reduction results in a 6.33% increase in the distributor’s 

optimal total cost. The greatest reduction in the group total cost (-16.46%) is achieved for 

wsl = 0.0. 

 

5.2.4.  Observations at the Factory Echelon 

 

When we minimize the factory’s total cost, the average optimum value of I* for the 

factory becomes 482 cases for 0.0 ≤ wsl ≤ 0.1 and -156.44 cases for 0.2 ≤ wsl ≤ 1.0 (Table 

5.22). In obtaining the optimum I* values, we limit the search interval to [-1000, 1000] 
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cases. We observe that the minimum I* level is -826 cases and it is obtained when wsl is 

0.2. Besides this, the maximum I* level is 863 cases and it is obtained when wsl is 0.0. 

 

Table 5.22.  Optimum I* and corresponding cost values when we optimize the 

factory’s total cost. 

Rwsl  

Wwsl  

Dwsl  

Optimum 


FI  

(case) 

GTC  

($) 
RTC  

($) 
WTC  

($) 
DTC  

($) 
FTC  

($) 

0.0 863 366378 7951.5 72295 151436.5 134695 

0.1 101 228079.5 3684 38294.5 120197.5 65903.5 

0.2 -826 176903.5 4775 36587.5 123380 12161 

0.3 -353 57582.5 2729 10651 39233 4969.5 

0.4 -129 26304 2167 5298.5 13179 5659.5 

0.5 -71 16797 1999.5 3857.5 6573.5 4366.5 

0.6 1 9593.5 1451 2146 2923.5 3073 

0.7 -2 8538 1693 2144.5 2450 2250.5 

0.8 7 3661 803 909.5 908.5 1040 

0.9 1 2187.5 592 591.5 541.5 462.5 

1.0 0 1432.5 447 402 341 242.5 

 

When we minimize group total cost by trying different I* values for the factory, the 

average optimum value of I* for the factory becomes 230.73 cases for 0.0 ≤ wsl ≤ 1.0 

(Table 5.23). In obtaining the optimum I* values, we limit the search interval to 

[-2000, 2000] cases. We observe that the minimum I* level is -1 case and it is obtained 

when wsl is 0.5. Besides this, the maximum I* level is 1139 cases and it is obtained when 

wsl = 0.0. 

 

In Figure 5.19 and Figure 5.20, we observe that there are some differences in the 

factory’s cost values and GTC values under two different objectives (i.e., the minimum 

cost for the factory can be obtained and the minimum group total cost can be obtained by 

optimizing the factory’s I*). 
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Table 5.23.  Optimum I* and corresponding cost values when we optimize group 

total cost by trying different I* values for the factory. 

Rwsl  

Wwsl  

Dwsl  

Optimum 


FI  

(case) 

GTC  

($) 
RTC  

($) 
WTC  

($) 
DTC  

($) 
FTC  

($) 

0.0 1139 342114 7951.5 72505 118639.5 143018 

0.1 641 154266.5 4038 23676.5 50508.5 76043.5 

0.2 385 75915.5 2406 9481.5 20270.5 43757.5 

0.3 226 38031 1912.5 4875 9347 21896.5 

0.4 70 20052.5 1308 2778.5 6442.5 9523.5 

0.5 -1 12023 1396.5 2370 3849.5 4407 

0.6 45 9239.5 1095.5 1597.5 2167.5 4379 

0.7 18 7639.5 1338 1779 2004 2518.5 

0.8 13 3528 691 771 773 1293 

0.9 2 2184.5 578.5 579 531 496 

1.0 0 1432.5 447 402 341 242.5 
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Figure 5.19.  Factory’s cost values for the two different objectives. 
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Figure 5.20.  Group total cost values for the two different objectives. 

 

Table 5.24.  The percent changes in the optimum FTC  and in the optimum GTC. 

Rwsl  

Wwsl  

Dwsl  



FI  

for 

Obj. 1 



FI  

for 

Obj. 2 

Change in FTC  

(%) 

Change in GTC  

(%) 

0.0 863 1139 6.18 -6.62 

0.1 101 641 15.39 -32.36 

0.2 -862 385 259.82 -57.09 

0.3 -353 226 340.62 -33.95 

0.4 -129 70 68.27 -23.77 

0.5 -71 -1 0.93 -28.42 

0.6 1 45 42.50 -3.69 

0.7 -2 18 11.91 -10.52 

0.8 7 13 24.33 -3.63 

0.9 1 2 7.24 -0.14 

1.0 0 0 0.00 0.00 

 

In Table 5.24, we present the percent changes in the optimum factory’s total cost 

( FTC ) and in the optimum group total cost (GTC) for each wsl value when we change the 

objective of the minimization problem from “optimizing the factory’s total cost” to 

“optimizing group total cost by optimizing the factory’s I*”. For example, when wsl values 



 95 

for the retailer, the wholesaler, and the distributor are equal to 0.0, we can reduce group 

total cost by 6.62% and this reduction results in a 6.18% increase in the factory’s optimal 

total cost. The greatest reduction in the group total cost (-57.09%) is achieved for 

wsl = 0.2. 

 

5.3.  Key Observations 

 

In the previous sections of this chapter, the results obtained for each echelon are 

analyzed and presented in an isolated noncomparative fashion. In this section, a 

comparative analysis will be presented. 

 

5.3.1.  Key Observations in Stock Adjustment Time Optimization 

 

In the 36 week simulations, when we minimize the retailer’s, the wholesaler’s, the 

distributor’s, or the factory’s total costs, sat equals one week for all wsl values becomes 

optimal (see Table 4.25). However, when we increase the final simulated time to 144 

weeks, we observe that taking sat as infinity for low values of wsl for the wholesaler, the 

distributor, and the factory becomes optimum. Moreover, making milder adjustments until 

wsl is 0.9 turns out to be optimum. (see Table 5.25). Similar to the results obtained for the 

36 week simulations, taking sat as one week still minimizes the retailer’s total cost, except 

for wsl = 0.7. 

 

Similar to the results obtained for the 36 week simulations, when we optimize group 

total cost by trying different sat values for the retailer, the wholesaler, and the distributor, 

we observe that making mild or no adjustments (i.e., taking sat as infinity.) minimizes 

group total cost for low values of wsl. This also means that they give orders equal to (or 

close to) the expected demands of their customers for these wsl values. Different than the 

results obtained for the 36 week simulations, making milder adjustments for some values 

of wsl minimizes the factory’s total cost (see Table 5.26). Unlike the other echelons, when 

we minimize group total cost for 0.0 ≤ wsl ≤ 0.3 for the factory, we observe that behaving 

as aggressively as possible for inventory and supply line adjustments in the 144 week 

simulations turns out to be optimal. 
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Table 5.25.  Optimum sat values for the retailer, the wholesaler, the distributor, and 

the factory we minimize their total costs by trying different sat values. 

wsl  Rsat  

(week) 
Wsat  

(week) 
Dsat  

(week) 
Fsat  

(week) 

0.0 1 ∞ ∞ ∞ 

0.1 1 1 ∞ ∞ 

0.2 1 12 ∞ ∞ 

0.3 1 2 ∞ ∞ 

0.4 1 12 7 ∞ 

0.5 1 11 2 1 

0.6 1 13 12 7 

0.7 2 14 7 16 

0.8 1 10 14 9 

0.9 1 1 1 1 

1.0 1 1 1 1 

 

Table 5.26.  Optimum sat values for the retailer, the wholesaler, the distributor, and 

the factory when we minimize group total cost by trying different sat values. 

wsl  Rsat  

(week) 
Wsat  

(week) 
Dsat  

(week) 
Fsat  

(week) 

0.0 ∞ ∞ ∞ 1 

0.1 ∞ ∞ ∞ 1 

0.2 ∞ 12 ∞ 1 

0.3 ∞ 13 ∞ 1 

0.4 8 12 16 2 

0.5 1 10 2 1 

0.6 4 13 12 7 

0.7 3 14 7 16 

0.8 3 14 14 14 

0.9 1 6 1 1 

1.0 1 1 1 1 

 

In Table 5.27, we present group total cost values when we minimize group total cost 

by trying different sat values. Similar to the results obtained for the 36 week simulations, 

the sat based optimizations yield the lowest group total cost values for most values of the 

wsl when the wholesaler is the echelon of concern. In addition, for wsl equals 0.7 and 0.9, 
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the minimum group total cost value is achieved when the retailer is the echelon of concern. 

Similar to the results obtained for the 36 week simulations, as wsl increases, the differences 

between maximum and minimum optimum group total cost values obtained for the 

different echelons of concern gets smaller. 

 

Table 5.27.  Group total cost values when we minimize group total cost for the four 

different echelons of concern by trying different sat values. 

wsl  
GTC  Minimized 

for the Retailer 

($) 

GTC  Minimized 

for the Wholesaler 

($) 

GTC  Minimized 

for the Distributor 

($) 

GTC  Minimized 

for the Factory 

($) 

0.0 93127.5 42889.5 257595.5 823558 

0.1 39964.5 24024.5 78707.5 290018.5 

0.2 19323.5 15482 36617 120964 

0.3 13455.5 9831.5 14280.5 49976 

0.4 9795.5 7681.5 12007 23623.5 

0.5 8704.5 6823.5 9152.5 12321.5 

0.6 5947.5 5275 7072.5 8645 

0.7 3076 3120.5 3388.5 6300.5 

0.8 2505.5 2228.5 3017 4253.5 

0.9 1595.5 1866.5 2168 2322 

1.0 1432.5 1432.5 1432.5 1432.5 

 

5.3.2.  Key Observations in Desired Inventory Optimization 

 

Similar to the results obtained for 36 week simulations, the optimum values of 

desired inventory (I*) for all echelons of concern are affected from the wsl value of the 

three identically controlled echelons; the optimum I* values for the distributor and the 

factory echelons are affected more than the optimum I* values for the retailer and the 

wholesaler echelons. The optimum desired inventory (I*) levels for the retailer, the 

wholesaler, the distributor, and the factory when we minimize their total costs are 

presented in Table 5.28. 
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Table 5.28.  Optimum I* values for the retailer, the wholesaler, the distributor, and 

the factory when we minimize their total costs by trying different I* values. 

wsl  


RI  

(case) 



WI  

(case) 



DI  

(case) 



FI  

(case) 

0.0 0 40 229 863 

0.1 2 34 109 101 

0.2 7 31 93 -826 

0.3 6 26 32 -353 

0.4 11 12 19 -129 

0.5 13 8 18 -71 

0.6 1 8 16 1 

0.7 8 6 7 -2 

0.8 2 3 4 7 

0.9 0 1 0 1 

1.0 0 0 0 0 

 

Table 5.29.  Optimum I* values for the retailer, the wholesaler, the distributor, and 

the factory when we minimize group total cost by trying different I* values. 

wsl  


RI  

(case) 



WI  

(case) 



DI  

(case) 



FI  

(case) 

0.0 -110 74 281 1139 

0.1 -18 58 163 641 

0.2 -11 57 84 385 

0.3 0 41 46 226 

0.4 11 28 19 70 

0.5 10 27 18 -1 

0.6 1 30 17 45 

0.7 26 10 9 18 

0.8 3 8 17 13 

0.9 0 2 3 2 

1.0 0 0 0 0 

 

The optimum desired inventory (I*) levels for the retailer, the wholesaler, the 

distributor, and the factory when we minimize group total cost are presented in Table 5.29. 

This time, the optimum I* values for the retailer are significantly affected from the changes 

in the wsl values like the distributor and the factory echelons, but the strength of the effect 
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on the optimum I* values for the wholesaler still is lower than the other three echelons, 

similar to the results for 36 week simulations. 

 

In Table 5.30, we present group total cost values when we minimize group total cost 

by trying different desired inventory levels. The I* based optimizations yield the lowest 

group total cost values for most values of the wsl when the wholesaler is the echelon of 

concern However, for wsl equals to 0.9, the minimum group total cost value is achieved 

when the retailer is the echelon of concern. In addition, similar to the results obtained from 

36 week simulation, as wsl increases, the differences between maximum and minimum 

optimum group total cost values obtained for the different echelons of concern gets 

smaller. 

 

Table 5.30.  Group total cost values when we minimize group total cost for the four 

different echelons of concern by trying different desired inventory levels. 

wsl  
GTC  Minimized 

for the Retailer 

($) 

GTC  Minimized 

for the Wholesaler 

($) 

GTC  Minimized 

for the Distributor 

($) 

GTC  Minimized 

for the Factory 

($) 

0.0 119727 32034.5 77278 342114 

0.1 56376.5 20425.5 43569.5 154266.5 

0.2 24552 13549.5 24779.5 75915.5 

0.3 13995.5 10884 17945.5 38031 

0.4 8879 7678 11431 20052.5 

0.5 8115.5 5026.5 7308.5 12023 

0.6 4328 3324.5 5109 9239.5 

0.7 3874.5 2796 3204 7639.5 

0.8 2368.5 2358.5 2764 3528 

0.9 1595.5 1920.5 2085.5 2184.5 

1.0 1432.5 1432.5 1432.5 1432.5 

 

When we compare the cost values in Table 5.27 and Table 5.30, we observe that 

keeping desired inventory at a level different than zero in general gives a better instance of 

the anchor-and-adjust ordering policy compared to assigning a value to sat that is greater 

than one week. 
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6.  A SINGLE ECHELON WITH A SUB-OPTIMAL CONTROL 

 

 

In this chapter, we first report the benchmark group total cost obtained when all four 

echelons manage their inventories optimally (i.e., sat = 1 week and wsl = 1 for all 

echelons). Later, we obtain results by assigning zero to wsl of a selected echelon, which 

represents a sub-optimal control for that echelon, while keeping the rest of the parameters 

of the benchmark as they are. Sub-optimal inventory management of the distributor has a 

worse effect on the group total cost ($4,446.5 for 36 weeks and $10,986.5 for 144 weeks) 

compared to the effect of the factory ($1,837.5 for 36 weeks and $4,179.5 for 144 weeks), 

the effect of the wholesaler ($8,171.5 for 36 weeks and $26,643 for 144 weeks) is worse 

than the effect of the distributor, and the retailer has the worst effect ($12,866 for 36 weeks 

and $54,001 for 144 weeks) compared to all (see Table 6.1and Table 6.2). 

 

The benchmark group total cost values are $1,428.5 for 36 weeks and $1,432.5 for 

144 weeks. To obtain the benchmark group total cost, the main parameter setting that is 

explained in Chapter 3 is used. The experimental parameters are set as below: 

 

 I* = 0 cases for all echelons 

 sat =1 week for all echelons 

 wsl = 1 for all echelons 
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Table 6.1.  Sub-optimal total cost values obtained by assigning zero to wsl of one of 

the echelons (for 36 weeks). 

 

0Rwsl  

1Wwsl  

1Dwsl  

1Fwsl  

1Rwsl  

0Wwsl  

1Dwsl  

1Fwsl  

1Rwsl  

1Wwsl  

0Dwsl  

1Fwsl  

1Rwsl  

1Wwsl  

1Dwsl  

0Fwsl  

RTC  ($) 2845.5 534 491 455 

WTC  ($) 4225 2571.5 447 416 

DTC  ($) 3628.5 3011.5 1902.5 387 

FTC  ($) 2167 2054.5 1606 579.5 

GTC  ($) 12866 8171.5 4446.5 1837.5 

Percent increase 

in GTC  
800.67 472.03 211.27 28.63 

 

Table 6.2.  Sub-optimal total cost values obtained by assigning zero to wsl of one of 

the echelons (for 144 weeks). 

 

0Rwsl  

1Wwsl  

1Dwsl  

1Fwsl  

1Rwsl  

0Wwsl  

1Dwsl  

1Fwsl  

1Rwsl  

1Wwsl  

0Dwsl  

1Fwsl  

1Rwsl  

1Wwsl  

1Dwsl  

0Fwsl  

RTC  ($) 9952 864 909 915 

WTC  ($) 12406.5 6794.5 865 870 

DTC  ($) 16185 9544 4278.5 817 

FTC  ($) 15457.5 9440.5 4934 1577.5 

GTC  ($) 54001 26643 10986.5 4179.5 

Percent increase 

in GTC  
3669.70 1759.90 666.95 191.76 
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7.  CONCLUSIONS 

 

 

In this study, we first constructed a detailed mathematical model that represents and 

replicates the exact execution order of the steps of the original board version of The Beer 

Game. In Chapter 2, we state the difficulties that we faced in the construction process of 

such an exact one-to-one replica. One of the main difficulties is an error regarding the 

conceptualization of the delay durations as explained in detail in Section 2.3. We present 

the constructed model in full precision including necessary assumptions, explanations, and 

units for all parameters and variables in Section 2.1. To increase the usability of the model 

presented in this paper, we write an R code of the model that is given in Appendix A. For 

extendibility, in Section 2.2, we shortly discuss how the code given in Appendix A can be 

used in experimentation and how it can be used to create a single-player or multi-player 

beer game on a computer. In Section 2.4, we verify that the constructed mathematical 

model is a correct representation of The Beer Game. 

 

We conduct experiments for two different objectives: (i) we minimize the total cost 

of the echelon of interest or (ii) we minimize the group total cost. Except for a few cases, 

these two objectives results in different instances of the anchor-and-adjust heuristic, 

especially when the three other echelons underweight their own individual supply lines. In 

general, our results show that, by optimizing the decision parameters for the echelon of 

concern, the group total cost value can be decreased when the group total cost is minimized 

instead of minimizing the cost of the selected echelon. This result implies that the echelon 

of concern can decrease the expected group total cost, which also includes the total cost of 

that echelon, by allowing an increase in its own expected total cost by changing the policy 

instance he uses. This new instance of policy will be different than the optimum policy 

instance obtained when all group members use the optimal policy instance. 

 

Sub-optimal inventory management of the distributor has a worse effect on the group 

total cost compared to the effect of the factory, the effect of the wholesaler is worse than 

the effect of the distributor, and the retailer has the worst effect compared to all. We were 

thus expecting the retailer to be the most effective echelon in reducing the group total cost 

when we sacrifice the objective of minimizing the retailer’s total cost. Unexpectedly, we 
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obtained the lowest group total costs for the wholesaler when we minimized the group total 

cost by sacrificing the objective of minimizing the cost of the echelon of concern. 

Therefore, a group of people playing The Beer Game for the first time should place the 

group member who has the most experience and/or knowledge in managing inventories to 

the wholesaler position to be able to obtain the least group total cost. 

 

We obtained different instances of the anchor-and-adjust ordering policy by 

optimizing with respect to stock adjustment time and with respect to desired inventory of 

the selected echelon. All echelons make adjustments in a week while minimizing their own 

costs, but the retailer, the wholesaler, and the distributor echelons tend to make mild or no 

adjustments while minimizing the group total cost; the factory does not change its 

behavior, it continues to make adjustments in a week. If the group members are not 

knowledgeable in managing inventories or have no experience as such, we suggest the 

participant in the retailer, in the wholesaler, or in the distributor position to make smooth 

adjustments. However, the participant in the factory position should behave as aggressively 

as possible in inventory and supply line adjustments. In optimizations with respect to stock 

adjustment time, the retailer is the second effective echelon after the wholesaler; the 

factory is ineffective in reducing the group total cost by sacrificing his own total cost. 

Making mild or no adjustments implies that the echelon of concern should give orders 

equal to (or close to) the expected demands of its customer. In other words, it can be said 

that it avoids adjusting its effective inventory and supply line towards their desired levels 

because any adjustments brings instabilities to the system. The selection of a high or 

infinite stock adjustment time value results in negative effective inventory level (i.e., 

backlog) for the echelon of interest. However, when the echelon of concern minimizes its 

own cost, it makes relatively more aggressive adjustments to bring its own inventory to the 

desired level, which results in costly oscillations in the other three echelons’ inventories. 

 

We were expecting the optimum values of desired inventory of a selected echelon to 

be zero because if effective inventory is zero for an echelon in a week, that echelon 

produces no costs in that week. Surprisingly, when the group members other than the 

echelon of concern sub-optimally manage their inventories, having a non-zero desired 

inventory can reduce costs for both the echelon of concern and the whole supply chain. If 

the group members are not knowledgeable in managing inventories or have no experience 
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as such, we suggest the participant who is assumed to be knowledgeable to have a non-zero 

desired inventory regardless of his position. Moreover, in general, optimizing with respect 

to desired inventory level produces better results than optimizing with respect to stock 

adjustment time according to the results. Except for the retailer, an echelon of concern 

tends to have a higher desired inventory level when optimizing the group total cost, as 

compared to optimizing its own total cost. Although the factory was not effective in 

reducing the group total cost in optimizations for stock adjustment time, it is effective in 

optimizations for desired inventory. Unpredictably, in optimizations for desired inventory, 

the distributor is the second effective echelon after the wholesaler. 

 

After conducting our experiments in the original setting of The Beer Game, we 

increased the final time of the simulation runs from 36 weeks to 144 weeks to observe the 

effect of final time on the results. Similar to the results obtained for the 36 week 

simulations, the wholesaler remained to be the most effective echelon in reducing the 

group total cost by sacrificing its own objective of minimizing its own echelon’s cost. 

Different than the results obtained for the 36 week simulations, optimizing desired 

inventory level produces better results than optimizing stock adjustment time in lesser 

number of cases. If the group members are not knowledgeable in managing inventories or 

have no experience as such, we can still suggest the participant who is the knowledgeable 

one to keep a desired inventory level different than zero. Different than 36 week 

simulations, in optimizations for stock adjustment time, all echelons except for the factory 

start to make stronger corrections when optimizing the group total cost value. All echelons 

except for the retailer start to make milder corrections when optimizing their own total cost 

values compared to the results obtained for 36 week simulations. Relatively aggressive 

corrections create difficulties for the other echelons. We presume, there is no bad effect 

reflecting on the echelon making strong corrections in the 36 week simulations. However, 

this is not the case in 144 week simulations; the difficulties faced by the other echelons 

start to have some effect on the echelon making strong corrections, after some time. In 144 

week simulations, when one week is assigned to stock adjustment time and unity is 

assigned to weight of supply line for all the echelons, the optimum desired inventory values 

are obtained as zero cases for all echelons and for both of the objectives, which supports 

the expectation that the long-term optimum values of desired inventory levels should all be 

zero. 
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We repeated our experiments by conducting multi-dimensional optimizations for 

both stock adjustment time and desired inventory. However, we were unable to obtain a 

significant interaction effect. We are planning to continue the research by repeating our 

experiments for different jump sizes in the end-customer demand. We are also planning to 

use varying demand in the experiments. Another idea for future research is to use  different 

cost functions. 
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APPENDIX A:  R CODE OF THE MATHEMATICAL MODEL 

(EQUATIONS 2.1-2.70) 

 

 

# Appendix A: R code of the mathematical model (equations 1-

70) 

# VARIABLE CREATION 

# In this segment of the code, variables are created by 

# assigning dummy values to them, which are not used in 

# the simulation. This step is necessary in R. 

 

endcd = 0 

 

s_endc = 0 

s_r = 0 

s_w = 0 

s_d = 0 

 

ti_r = 0 

ti_w = 0 

ti_d = 0 

ti_f = 0 

 

o_r = 0 

o_w = 0 

o_d = 0 

psr = 0 

 

io_w = 0 

io_d = 0 

io_f = 0 

 

ei_r = 0 
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ei_w = 0 

ei_d = 0 

ei_f = 0 

 

sl_r = 0 

sl_w = 0 

sl_d = 0 

sl_f = 0 

 

sla_r = 0 

sla_w = 0 

sla_d = 0 

sla_f = 0 

 

ia_r = 0 

ia_w = 0 

ia_d = 0 

ia_f = 0 

  

# PARAMETERS AND INITAL VALUES OF THE MATHEMATICAL MODEL 

# In order to ease the comparison of the mathematical 

# model and the R code, the equation numbers are also 

# provided in the R code. For example #1, #2, #3, and so 

# on and so forth. 

 

sat_r = 1  #1 

sat_w = 1  #1 

sat_d = 1  #1 

sat_f = 1  #1 

 

mdt_r = 1  #2 

mdt_w = 1  #2 

mdt_d = 1  #2 



 108 

 

st_w = 2  #3 

st_d = 2  #3 

st_f = 2  #3 

 

plt = 2   #4 

 

wsl_r = 1  #5 

wsl_w = 1  #5 

wsl_d = 1  #5 

wsl_f = 1  #5 

 

theta_r = 0.2 #6 

theta_w = 0.2 #6 

theta_d = 0.2 #6 

theta_f = 0.2 #6 

 

# In R, an index of zero cannot be used in an array. For 

# example, the first element of an array of variable x, 

# is represented as x[1]. Therefore, t in R corresponds 

# to t-1 in the mathematical model.   

 

for(t in 2:5) #7 (corresponds to t = 1 to 4 

endcd[t] = 4 #  in the mathematical model) 

 

for(t in 6:37) #7 (corresponds to t = 5 to 36 

endcd[t] = 8 #  in the mathematical model) 

 

eecd = 4  #8 

eo_r = 4  #9 

eo_w = 4  #9 

eo_d = 4  #9 
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di_r = 0  #10 

di_w = 0  #10 

di_d = 0  #10 

di_f = 0  #10 

 

dsl_r = eecd * (mdt_r + st_w)  #11 

dsl_w = eo_r * (mdt_w + st_d)  #12 

dsl_d = eo_w * (mdt_d + st_f)  #13 

dsl_f = eo_d * plt     #14 

 

b_r = 0    #15 

b_w = 0    #15 

b_d = 0    #15 

b_f = 0    #15 

 

i_r = 12    #16 

i_w = 12    #16 

i_d = 12   #16 

i_f = 12   #16 

 

iti1_r = 4   #17 

iti1_w = 4   #17 

iti1_d = 4   #17 

 

wipi1 = 4   #18 

 

iti2_r = 4   #19 

iti2_w = 4   #19 

iti2_d = 4   #19 

 

wipi2 = 4   #20 

 

o_r[2] = 4   #21 
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o_w[2] = 4   #21 

o_d[2] = 4   #21 

 

psr[2] = 4   #22 

 

io_w[2] = 4   #23 

io_d[2] = 4   #23 

io_f[2] = 4   #23 

 

tc_r = 0   #24 

tc_w = 0   #24 

tc_d = 0   #24 

tc_f = 0   #24 

 

uihc = 0.5   #25 

ubc = 1    #26 

 

# START OF THE SIMULATION-FOR-LOOP 

 

for(t in 2:37)  # (corresponds to t = 1 to 36 

{    # in the mathematical model) 

 

#####Step 1##### 

 

ti_r[t] = i_r[t-1] + iti2_r[t-1] #27 

ti_w[t] = i_w[t-1] + iti2_w[t-1] #27 

ti_d[t] = i_d[t-1] + iti2_d[t-1] #27 

 

ti_f[t] = i_f[t-1] + wipi2[t-1] #28 

 

iti2_r[t] = iti1_r[t-1]   #29 

iti2_w[t] = iti1_w[t-1]   #29 

iti2_d[t] = iti1_d[t-1]   #29 



 111 

 

wipi2[t] = wipi1[t-1]  #30 

 

iti1_r[t] = 0    #31 

iti1_w[t] = 0    #31 

iti1_d[t] = 0    #31 

 

wipi1[t] = 0    #32 

 

#####Step 2##### 

 

s_endc[t] = min(ti_r[t], b_r[t-1] + endcd[t]) #33 

s_r[t] = min(ti_w[t], b_w[t-1] + io_w[t])  #34 

s_w[t] = min(ti_d[t], b_d[t-1] + io_d[t])  #35 

s_d[t] = min(ti_f[t], b_f[t-1] + io_f[t])  #36 

 

iti1_r[t] = s_r[t]   #37 

iti1_w[t] = s_w[t]   #37 

iti1_d[t] = s_d[t]   #37 

 

wipi1[t] = psr[t]   #38 

 

#####Step 3##### 

 

b_r[t] = b_r[t-1] + endcd[t] - s_endc[t] #39 

b_w[t] = b_w[t-1] + io_w[t] - s_r[t]  #40 

b_d[t] = b_d[t-1] + io_d[t] - s_w[t]  #41 

b_f[t] = b_f[t-1] + io_f[t] - s_d[t]  #42 

 

i_r[t] = ti_r[t] - s_endc[t]  #43 

i_w[t] = ti_w[t] - s_r[t]   #44 

i_d[t] = ti_d[t] - s_w[t]   #45 

i_f[t] = ti_f[t] - s_d[t]   #46 
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#####Expectation Formation##### 

 

eecd[t] = eecd[t-1] + theta_r * (endcd[t] - eecd[t-1])  

 #47 

eo_r[t] = eo_r[t-1] + theta_w * (io_w[t] - eo_r[t-1]) 

 #48 

eo_w[t] = eo_w[t-1] + theta_d * (io_d[t] - eo_w[t-1]) 

 #49 

eo_d[t] = eo_d[t-1] + theta_f * (io_f[t] - eo_d[t-1]) 

 #50 

 

#####Step 4##### 

 

io_w[t+1] = o_r[t] #51 

io_d[t+1] = o_w[t] #52 

io_f[t+1] = o_d[t] #53 

 

#####Step 5##### 

 

dsl_r[t] = eecd[t] * (mdt_r + st_w) #54 

dsl_w[t] = eo_r[t] * (mdt_w + st_d) #55 

dsl_d[t] = eo_w[t] * (mdt_d + st_f) #56 

dsl_f[t] = eo_d[t] * plt   #57 

 

ei_r[t] = i_r[t] - b_r[t]  #58 

ei_w[t] = i_w[t] - b_w[t]  #58 

ei_d[t] = i_d[t] - b_d[t]  #58 

ei_f[t] = i_f[t] - b_f[t]  #58 

 

sl_r[t] = io_w[t+1] + b_w[t] + iti1_r[t] + iti2_r[t] #59 

sl_w[t] = io_d[t+1] + b_d[t] + iti1_w[t] + iti2_w[t] #60 

sl_d[t] = io_f[t+1] + b_f[t] + iti1_d[t] + iti2_d[t] #61 
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sl_f[t] = wipi1[t] + wipi2[t]      #62 

 

sla_r[t] = wsl_r * (dsl_r[t] - sl_r[t]) / sat_r  #63 

sla_w[t] = wsl_w * (dsl_w[t] - sl_w[t]) / sat_w  #63 

sla_d[t] = wsl_d * (dsl_d[t] - sl_d[t]) / sat_d  #63 

sla_f[t] = wsl_f * (dsl_f[t] - sl_f[t]) / sat_f  #63 

 

ia_r[t] = (di_r - ei_r[t]) / sat_r   #64 

ia_w[t] = (di_w - ei_w[t]) / sat_w   #64 

ia_d[t] = (di_d - ei_d[t]) / sat_d   #64 

ia_f[t] = (di_f - ei_f[t]) / sat_f   #64 

 

if(t <= 5)  # (corresponds to t <= 4 

{    # in the mathematical model) 

o_r[t+1] = 4 #65 

o_w[t+1] = 4 #66 

o_d[t+1] = 4 #67 

psr[t+1] = 4 #68 

} 

else 

{ 

o_r[t+1] = floor(max(eecd[t] + ia_r[t] + sla_r[t], 0) + 0.5)

 #65 

o_w[t+1] = floor(max(eo_r[t] + ia_w[t] + sla_w[t], 0) + 0.5)

 #66 

o_d[t+1] = floor(max(eo_w[t] + ia_d[t] + sla_d[t], 0) + 0.5)

 #67 

psr[t+1] = floor(max(eo_d[t] + ia_f[t] + sla_f[t], 0) + 0.5)

 #68 

} 

 

# In the mathematical model, we assume that the values are 

# rounded using the "round half away from zero" tie-breaking 
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# rule. However, the function "round" in R uses the "round 

# half alternatingly" rule. After adding 0.5 to the values 

# to be rounded, the "floor" function confirms to our assumed 

# tie-breaking rule only in the presence of non-negative 

# orders, which is guaranteed by the "max" function. 

 

tc_r[t] = tc_r[t-1] + (b_r[t] + 0.5 * i_r[t])  #69 

tc_w[t] = tc_w[t-1] + (b_w[t] + 0.5 * i_w[t])  #69 

tc_d[t] = tc_d[t-1] + (b_d[t] + 0.5 * i_d[t])  #69 

tc_f[t] = tc_f[t-1] + (b_f[t] + 0.5 * i_f[t])  #69 

} 

 

# END OF THE SIMULATION-FOR-LOOP 

 

# TOTAL COSTS OBTAINED AT EACH ECHELON ARE REPORTED  

 

tc_r[37] 

tc_w[37] 

tc_d[37] 

tc_f[37] 

 

# The above cost values correspond to the costs obtained 

# at the end of the game (t = 36 in the mathematical model) 

 

# THE GROUP TOTAL COST IS CALCULATED AND REPORTED  

 

gtc = tc_r[37] + tc_w[37] + tc_d[37] + tc_f[37]  #70 

 

gtc 
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APPENDIX B:  R CODE OF THE MATHEMATICAL MODEL 

(EQUATIONS 2.1-2.9, 2.15-2.53, 2.58-2.62, 2.69-2.70, and 2.72-2.75) 

 

 

# Appendix B: R code of the mathematical model 

# (equations 1-9, 15-53, 58-62, 69-70, and 72-75) 

# VARIABLE CREATION 

# In this segment of the code, variables are created by 

# assigning dummy values to them, which are not used in 

# the simulation. This step is necessary in R. 

 

endcd = 0 

 

s_endc = 0 

s_r = 0 

s_w = 0 

s_d = 0 

 

ti_r = 0 

ti_w = 0 

ti_d = 0 

ti_f = 0 

 

o_r = 0 

o_w = 0 

o_d = 0 

psr = 0 

 

io_w = 0 

io_d = 0 

io_f = 0 

 

ei_r = 0 
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ei_w = 0 

ei_d = 0 

ei_f = 0 

 

sl_r = 0 

sl_w = 0 

sl_d = 0 

sl_f = 0 

  

# PARAMETERS AND INITAL VALUES OF THE MATHEMATICAL MODEL 

# In order to ease the comparison of the mathematical 

# model and the R code, the equation numbers are also 

# provided in the R code. For example #1, #2, #3, and so 

# on and so forth. 

 

sat_r = 1  #1 

sat_w = 1  #1 

sat_d = 1  #1 

sat_f = 1  #1 

 

mdt_r = 1  #2 

mdt_w = 1  #2 

mdt_d = 1  #2 

 

st_w = 2  #3 

st_d = 2  #3 

st_f = 2  #3 

 

plt = 2   #4 

 

wsl_r = 1  #5 

wsl_w = 1  #5 

wsl_d = 1  #5 
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wsl_f = 1  #5 

 

theta_r = 0  #6 

theta_w = 0  #6 

theta_d = 0  #6 

theta_f = 0  #6 

 

# In R, an index of zero cannot be used in an array. For 

# example, the first element of an array of variable x, 

# is represented as x[1]. Therefore, t in R corresponds 

# to t-1 in the mathematical model.   

 

for(t in 2:5) #7 (corresponds to t = 1 to 4 

endcd[t] = 4 #  in the mathematical model) 

 

for(t in 6:37) #7 (corresponds to t = 5 to 36 

endcd[t] = 8 #  in the mathematical model) 

 

eecd = 4  #8 

eo_r = 4  #9 

eo_w = 4  #9 

eo_d = 4  #9 

 

b_r = 0   #15 

b_w = 0   #15 

b_d = 0   #15 

b_f = 0   #15 

 

i_r = 12   #16 

i_w = 12   #16 

i_d = 12  #16 

i_f = 12  #16 
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iti1_r = 4  #17 

iti1_w = 4  #17 

iti1_d = 4  #17 

 

wipi1 = 4  #18 

 

iti2_r = 4  #19 

iti2_w = 4  #19 

iti2_d = 4  #19 

 

wipi2 = 4  #20 

 

o_r[2] = 4  #21 

o_w[2] = 4  #21 

o_d[2] = 4  #21 

 

psr[2] = 4  #22 

 

io_w[2] = 4  #23 

io_d[2] = 4  #23 

io_f[2] = 4  #23 

 

tc_r = 0  #24 

tc_w = 0  #24 

tc_d = 0  #24 

tc_f = 0  #24 

 

uihc = 0.5  #25 

ubc = 1   #26 

 

s_prime_r = 28 

s_prime_w = 28 

s_prime_d = 28 
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s_prime_f = 20 

 

# START OF THE SIMULATION-FOR-LOOP 

 

for(t in 2:37)  # (corresponds to t = 1 to 36 

{    # in the mathematical model) 

 

#####Step 1##### 

 

ti_r[t] = i_r[t-1] + iti2_r[t-1] #27 

ti_w[t] = i_w[t-1] + iti2_w[t-1] #27 

ti_d[t] = i_d[t-1] + iti2_d[t-1] #27 

 

ti_f[t] = i_f[t-1] + wipi2[t-1] #28 

 

iti2_r[t] = iti1_r[t-1]   #29 

iti2_w[t] = iti1_w[t-1]   #29 

iti2_d[t] = iti1_d[t-1]   #29 

 

wipi2[t] = wipi1[t-1]   #30 

 

iti1_r[t] = 0    #31 

iti1_w[t] = 0    #31 

iti1_d[t] = 0    #31 

 

wipi1[t] = 0    #32 

 

#####Step 2##### 

 

s_endc[t] = min(ti_r[t], b_r[t-1] + endcd[t]) #33 

s_r[t] = min(ti_w[t], b_w[t-1] + io_w[t])  #34 

s_w[t] = min(ti_d[t], b_d[t-1] + io_d[t])  #35 

s_d[t] = min(ti_f[t], b_f[t-1] + io_f[t])  #36 
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iti1_r[t] = s_r[t]   #37 

iti1_w[t] = s_w[t]   #37 

iti1_d[t] = s_d[t]   #37 

 

wipi1[t] = psr[t]   #38 

 

#####Step 3##### 

 

b_r[t] = b_r[t-1] + endcd[t] - s_endc[t] #39 

b_w[t] = b_w[t-1] + io_w[t] - s_r[t]  #40 

b_d[t] = b_d[t-1] + io_d[t] - s_w[t]  #41 

b_f[t] = b_f[t-1] + io_f[t] - s_d[t]  #42 

 

i_r[t] = ti_r[t] - s_endc[t]  #43 

i_w[t] = ti_w[t] - s_r[t]   #44 

i_d[t] = ti_d[t] - s_w[t]   #45 

i_f[t] = ti_f[t] - s_d[t]   #46 

 

#####Expectation Formation##### 

 

eecd[t] = eecd[t-1] + theta_r * (endcd[t] - eecd[t-1])  

 #47 

eo_r[t] = eo_r[t-1] + theta_w * (io_w[t] - eo_r[t-1]) 

 #48 

eo_w[t] = eo_w[t-1] + theta_d * (io_d[t] - eo_w[t-1]) 

 #49 

eo_d[t] = eo_d[t-1] + theta_f * (io_f[t] - eo_d[t-1]) 

 #50 

 

#####Step 4##### 

 

io_w[t+1] = o_r[t] #51 
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io_d[t+1] = o_w[t] #52 

io_f[t+1] = o_d[t] #53 

 

#####Step 5##### 

 

ei_r[t] = i_r[t] - b_r[t]  #58 

ei_w[t] = i_w[t] - b_w[t]  #58 

ei_d[t] = i_d[t] - b_d[t]  #58 

ei_f[t] = i_f[t] - b_f[t]  #58 

 

sl_r[t] = io_w[t+1] + b_w[t] + iti1_r[t] + iti2_r[t] #59 

sl_w[t] = io_d[t+1] + b_d[t] + iti1_w[t] + iti2_w[t] #60 

sl_d[t] = io_f[t+1] + b_f[t] + iti1_d[t] + iti2_d[t] #61 

sl_f[t] = wipi1[t] + wipi2[t]       #62 

 

if(t <= 5)  # (corresponds to t <= 4 

{    # in the mathematical model) 

o_r[t+1] = 4 #72 

o_w[t+1] = 4 #73 

o_d[t+1] = 4 #74 

psr[t+1] = 4 #75 

} 

else 

{ 

o_r[t+1] = floor(max(eecd[t] + (s_prime_r - ei_r[t] 

- wsl_r * sl_r[t])/sat_r, 0) + 0.5) #72 

o_w[t+1] = floor(max(eo_r[t] + (s_prime_w - ei_w[t] 

- wsl_w * sl_w[t])/sat_w, 0) + 0.5) #73 

o_d[t+1] = floor(max(eo_w[t] + (s_prime_d - ei_d[t] 

- wsl_d * sl_d[t])/sat_d, 0) + 0.5) #74 

psr[t+1] = floor(max(eo_d[t] + (s_prime_f - ei_f[t] 

- wsl_f * sl_f[t])/sat_f, 0) + 0.5) #75 

} 
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# In the mathematical model, we assume that the values are 

# rounded using the "round half away from zero" tie-breaking 

# rule. However, the function "round" in R uses the "round 

# half alternatingly" rule. After adding 0.5 to the values 

# to be rounded, the "floor" function confirms to our assumed 

# tie-breaking rule only in the presence of non-negative 

# orders, which is guaranteed by the "max" function. 

 

tc_r[t] = tc_r[t-1] + (b_r[t] + 0.5 * i_r[t])  #69 

tc_w[t] = tc_w[t-1] + (b_w[t] + 0.5 * i_w[t])  #69 

tc_d[t] = tc_d[t-1] + (b_d[t] + 0.5 * i_d[t])  #69 

tc_f[t] = tc_f[t-1] + (b_f[t] + 0.5 * i_f[t])  #69 

} 

 

# END OF THE SIMULATION-FOR-LOOP 

 

# TOTAL COSTS OBTAINED AT EACH ECHELON ARE REPORTED  

 

tc_r[37] 

tc_w[37] 

tc_d[37] 

tc_f[37] 

 

# The above cost values correspond to the costs obtained 

# at the end of the game (t = 36 in the mathematical model) 

 

# THE GROUP TOTAL COST IS CALCULATED AND REPORTED  

 

gtc = tc_r[37] + tc_w[37] + tc_d[37] + tc_f[37]  #70 

 

gtc 
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APPENDIX C:  THE RELATIONSHIP BETWEEN ANCHOR-AND-

ADJUST ORDERING POLICY AND ORDER-UP-TO-S POLICY 

 

 

The anchor-and-adjust ordering policy and the order-up-to-S policy are equivalent to 

each other for specific set of parameter values (Yasarcan, 2012). 

 

The ordering equation of the anchor-and-adjust heuristic is as follows: 

 

 






 








 


SAT

SLSL
wsl

SAT

EII
EO

**

ˆ  (C.1) 

 

O stands for the order quantity, Ê  stands for the expected orders, I* stands for 

desired inventory, EI stands for effective inventory, wsl stands for weight of supply line, 

SL* stands for desired supply line, SL stands for supply line, and SAT stands for stock 

adjustment time. Note that, EI is equal to the difference between inventory and backlog 

level. 

 

SAT and wsl are the two parameters that are not used in inventory management 

literature. When they are taken as one and unity respectively, Equation C.1 turns out to be: 

 

    SLSLEIIEO  **ˆ  (C.2) 

 

Re-arranging the terms of Equation C.2 yields: 

 

    SLEISLIEO  **ˆ  (C.3) 

 

The order-up-to-S policy can be given as: 

 

 IPSO   (C.4) 

 

where, IP is inventory position and S is the base stock level. 
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Comparing Equations C.3 and C.4 yields the following two equations: 

 

 SLEIIP   (C.5) 

 

 **ˆ SLIES   (C.6) 

 

According to Equation C.5, inventory position has two terms: effective inventory and 

supply line (i.e., pipeline inventory). According to Equation C.6, base stock level consists 

of three terms. SL* is the expected demand during lead time (LT) and it is equal to 

expected orders ( Ê ) times lead time (LT). Therefore, Equation C.6 can be re-written as: 

 

   *1ˆ ILTES   (C.7) 

 

I* can be replaced by safety stock (SS). Therefore, Equation C.7 can be re-written as: 

 

   SSLTES  1ˆ  (C.8) 
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