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ABSTRACT

CONTROL HEURISTICS FOR THE SOFT LANDING PROBLEM

In this thesis, we first construct a basic model representing the soft landing problem. The
aim of the modeling effort is to transparently represent the process of landing a spacecraft
on the surface of a celestial body. The process of landing is an interesting problem because
there are two main contradictory performance criteria to be met simultaneously; the
landing duration should be as short as possible, but at the same time crashing the spacecraft
to the surface should be avoided. In this work, we studied four different control heuristics
for the soft landing problem. The first heuristic is adapted from the mass-spring-damper
model using the similarity of the equations of the soft landing model developed to the
equations of the mass-spring-damper model. The second one is a bang-bang heuristic that
first allows the spacecraft to fall freely, but after a critical point is reached, it uses the
reverse force thruster at its maximum power until the touchdown. Bang-bang heuristic
minimizes the time needed to land. The third heuristic is a combination of the bang-bang
and mass-spring-damper heuristics. This new heuristic also borrows the concept Weight of
Supply Line from System Dynamics literature. This new heuristic reconciles the two
heuristics reducing their respective problematic behaviors. The last heuristic is the terminal
guidance heuristic. The mass-spring-damper, bang-bang, new, and terminal guidance
heuristics are compared in terms of their performances in the presence of an error in the
parameter estimates, an error in the height readings, and an overlooked factor such as a
delay in changing the level of the force created by the reverse force thruster, which is
known as actuator delay. Terminal guidance heuristic and new heuristic lie in between
mass-spring-damper heuristic and bang-bang heuristic in the sense that they require a more
reasonable time to land as compared to the mass-spring-damper heuristic and they are not
as sensitive as the bang-bang heuristic to the deviations from the original model. Finally,
constant mass assumption is relaxed to observe a potential change in the behaviors
generated by the heuristics, including the deviations due to errors and actuator delay. This

relaxation also enables a comparison for the fuel consumption values of the heuristics.



OZET

YUMUSAK INiS PROBLEMI iCiN SEZGISEL KONTROL
YAKLASIMLARI

Bu tezde ilk dnce yumusak inis problemini temsil eden bir model kuruyoruz. Modelleme
cabasinin amaci bir uzay aracinin bir gékcismine inisini seffaf bir sekilde temsil etmektir.
Inis siireci ilging bir problemdir ¢iinkii iki karsit performans 6l¢iitii mevcuttur; inis siiresi
miimkiin oldugu kadar kisa olmali, fakat ayn1 zamanda uzay aracinin yiizeye ¢arpmasindan
da kacimilmalidir. Bu calismada, dért farkli sezgisel kontrol yaklasimi inceledik. ilk
sezgisel yaklasim, yumusak inis modeliyle kiitle-yay-soniim modelinin denklemlerinin
benzerliginden yararlanilarak kiitle-yay-soniim modelinden uyarlandi. Ikinci sezgisel
yaklagim ise Once uzay aracinin serbestge diismesine izin veren, fakat bir kritik noktaya
ulastiktan sonra iticiyi inis anina dek en yiiksek giigte kullanan iki konumlu bir sezgisel
yaklasimdir. Iki konumlu sezgisel yaklasim, inis siiresini enkiiciikler. Ugiincii sezgisel
yaklagim, iki konumlu ve kiitle-yay-soniim sezgisel yaklasimlarinin bir kombinasyonudur.
Ayrica, bu yeni sezgisel yaklasim Sistem Dinamigi literatiiriinden Tedarik Hatti Agirlig:
kavramini 6diing alir. Son sezgisel yaklasim ise nihai kilavuz sezgisel yaklagimidir. Kiitle-
yay-soniim, iki konumlu, yeni, ve nihai kilavuz sezgisel yaklagimlar1 performanslari
bakimindan degisik durumlarda karsilastirilmaktadirlar. S6zii edilen degisik durumlar; bir
parametre Ol¢lim hatasinin, yiikseklik gostergelerinin okunmasinda yapilan bir hatanin ve
iticinin gilictiniin degistirilmesinde tahrik diizenegi gecikmesi gibi bir etmenin gdzden
kacirilmasinin mevcudiyetidir. Nihai kilavuz sezgisel yaklasimi ve yeni sezgisel yaklasim,
kiitle-yay-soniim yaklagimina gore daha mantikli bir inis siiresine ihtiya¢ duymaktadirlar.
Orijinal modelden sapmalara karsi ise iki konumlu sezgisel yaklagima goére daha
dayaniklidirlar. Dolayisiyla, nihai kilavuz yaklasimi ve yeni sezgisel yaklasim bu iki
0zellik acisindan kiitle-yay-soniim ve iki konumlu sezgisel yaklasimlarinin arasindadirlar.
Son olarak, sezgisel yaklagimlarin davramislarindaki potansiyel degisikligi gozlemlemek
sabit kiitle varsayimi gevsetilmistir. Farkli sezgisel yaklasimlarin yakit sarfiyatlarinin
karsilagtiritlmasin1 da miimkiin kilan bu varsayim degisikligi, hatalarin ve tahrik diizenegi

gecikmesinin mevcudiyetinde de incelenmistir.
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1. INTRODUCTION

Soft landing is an interesting and challenging problem in space exploration. The
process of landing is a challenging task because there are two main contradictory
performance criteria to be met simultaneously; the landing duration should be as short as
possible, but at the same time crashing the spacecraft to the surface should be avoided
(Liu, Duan, and Teo, 2008). In order to achieve a fast and safe landing on the surface of a
celestial body, the landing process should be controlled. When landing on celestial bodies
with no atmosphere (e.g. the moon), deceleration strategies that rely on the drag force (e.g.
a parachute) do not work due to the absence of atmospheric molecules. Therefore, a
reverse force thruster, which will decelerate the vehicle, is needed (see Figure 1.1). The
design of reverse force thrusters for spacecrafts first came into focus during the
establishment of the space programs of the Soviet Union and USA (Rosen, Schwenk
1959). Manned lunar discovery projects set on with the landing of Apollo 11 on the moon
in 1969 and peaked in the 1970s. The last manned vehicle on the moon was in 1972.
However, the interest on landing on the moon continues with current and future unmanned
projects from several countries (USA, China, South Korea, Japan, Russia, India, Iran, UK,
EU). The design interest in lunar vehicles and their descent stages is not lost. Human return
to the moon is planned for the exploration of further destinations including Mars among
others (Wu et al. 2007).

Guidance algorithms for the navigation and the descent on the moon have been
studied. Linear and quadratic second-order differential equations (Klumpp, 1974;
Kriegsman and Reiss, 1962) controlling the descent have been proposed among others. It is
worth mentioning that the algorithm proposed by Klumpp has been used by NASA in the
six manned lunar landings and, later, published in 1974.

Fuel optimal landing strategies have also been studied early on during the space
program by government related agencies and later by scientists in the field, revealing that
the minimum time problem is equivalent to the minimum fuel problem. These past studies
revealed bang-bang control solutions. (Meditch, 1964; Flemming and Rishel, 1975;
Cantoni and Finzi, 1980).



Figure 1.1. Free body diagram of the vehicle with a control force (F) generated by the
reverse force thruster and the gravitational force (GF).

A reasonable landing process requires a control heuristic that will ensure the safety
of the spacecraft, which practically means a soft touchdown of the spacecraft to the surface
of the celestial body at the end of the landing process. Note that the landing force (the force
created at the time of touchdown) is a complex result of the landing velocity (the velocity
with which the spacecraft touches the surface), the landing gear parameters of the
spacecraft, the mass of the spacecraft, and the gravitational force. Out of these four
important components that determine the landing force, a control heuristic can only have
an effect on the landing velocity. Moreover, this effect is indirect. Control heuristic
determines the control force, control force results in the net force, net force determines the
acceleration, acceleration gradually adjusts the velocity, and the value of velocity at the
time of touchdown becomes the landing velocity. Therefore, it is not an easy task to
manage the landing velocity at around a desired level. Moreover, the heuristic that will be
employed should also manage the length of the time needed to land at a reasonably low
value because a long landing duration requires extensive fuel usage. The two criteria,
minimizing the landing velocity and minimizing the length of the time needed to land, are

contradictory, which makes the soft landing problem a challenging task. A control heuristic



aiming to satisfy the two criteria, should allow the vehicle descend to the surface rather
quickly, but make it decelerate safely to low velocity values before the instant of landing
(Liu, Duan, and Teo, 2008; Zhou et al., 2009). The landing dynamics of Apollo 15 is an
example of this strategy (Figure 1.2).
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Figure 1.2. The landing dynamics of Apollo 15.

In plotting the dynamics observed in Figure 1.2, we connected to the Apollo 15 entry
of the Wikipedia website (http://en.wikipedia.org/wiki/Apollo_15; accessed on 16
September  2011) and time coded the landing video on the page
(http://en.wikipedia.org/wiki/File:Apollo_15 landing_on_the _Moon.ogg; accessed on 16
September 2011). Note that, Apollo 15 was the fourth of the six manned vehicles to land
on the Moon (30 July 1971).

In this thesis work, we first construct a basic model representing the soft landing
problem. The aim of the modeling effort is to transparently represent the process of landing
a spacecraft on the surface of a celestial body. We modeled the soft landing challenge
using System Dynamics (SD) simulation methodology because SD has a strong focus on
the explicit representation of the problem related elements of a system (Barlas, 2002;
Forrester, 1961; Forrester, 1971; Sterman, 2000). The SD methodology is briefly presented



in Chapter 2, with the inclusion of the stock-flow diagram and the equations for the generic
stock management structure. The model and its assumptions are presented in Chapter 3.
Many real life complexities such as delays caused by actuators and measurement processes
are not represented in the model. Even under the simplifying model assumptions, the main
goal of the soft landing problem still remains a challenging one because the two state

variables “height” and “velocity” can only be indirectly controlled.

In Chapter 4, we present a control heuristic (i.e. control law) adapted from the mass-
spring-damper model. The mass-spring-damper based control heuristic is adapted from the
mass-spring-damper model using the similarity of the equations of the soft landing model
given in Chapter 3 to the equations of the mass-spring-damper model; both models can be
reduced to a second order linear differential equation. The behavior obtained from the

mass-spring-damper based control heuristic is discussed in detail in Chapter 4.

The bang-bang heuristic dynamically calculates a critical point. It first allows the
spacecraft to fall freely, but after the critical point is reached, it uses the reverse force
thruster at its maximum power until the touchdown (Meditch, 1964). The bang-bang
heuristic and the corresponding landing dynamics are discussed in Chapter 5.

In Chapter 6, a new heuristic is developed combining elements from the bang-bang
heuristic and the mass-spring-damper heuristic. Additionally, this new heuristic includes
the weight of supply line concept used in the anchor-and-adjust heuristic, which is widely
used in stock management. In Chapter 2, anchor-and-adjust heuristic is presented together
with the generic stock management structure. Although, this new heuristic is not superior
to the bang-bang heuristic and the mass-spring-damper heuristic in every aspect, it
succeeds in improving their most problematic responses. Note that, both the mass-spring-
damper heuristic and the anchor-and-adjust heuristic are in essence proportional derivative

feedback control applications.

In Chapter 7, a heuristic adapted from Kriegsman and Reiss (1962), terminal
guidance heuristic, is presented. The core of the formulation of this heuristic is the ratio of

the square of the velocity to the height. This ratio is used to calculate command



acceleration for the vehicle and the command acceleration is used to obtain the control

force.

The mass-spring-damper heuristic, the bang-bang heuristic, the new heuristic, and
the terminal guidance heuristic have different characteristics. The resulting behaviors of
the four heuristics are compared in Chapter 8. The strengths and weaknesses of the
heuristics are also discussed in Chapter 8 using three different types of deviations from
assumptions (an error in the parameter estimates; an error in the state variable readings; a
delay in changing the level of the force created by the reverse force thruster, which is

known as actuator delay), each containing four scenarios.

In Chapter 9, the constant mass assumption is relaxed. A variable mass is defined
based on fuel consumption, which is calculated depending on the value of the used force.
Some equations given in Chapter 3 are modified to reflect this assumption change.

The comparison of the behaviors of the four heuristics under the variable mass
assumption, with the same three types of deviations discussed in Chapter 8, is done in
Chapter 10. The differences between the performances of the models with and without

constant mass assumption are also discussed in Chapter 10.



2. THE STOCK MANAGEMENT STRUCTURE

System Dynamics is an interdisciplinary methodology for modeling and
understanding how complex systems change over time (Barlas, 2002; Barlas and Yasarcan,
2006; Forrester, 1961; Forrester, 1971; Sterman, 2000). Stock Management is one of the
important and well-studied problems in System Dynamics (Yasarcan and Barlas, 2005;
Yasarcan, 2010). Main modeling objects are stocks and flows® in System Dynamics.
“Stocks are accumulations ... Stocks are altered by inflows and outflows” (Sterman, 2000,
p. 192). Stocks characterize the state of the system; they give systems inertia and memory.
A flow or flows attached to a stock, however, describe the way the stock changes over time
(Barlas, 2002; Forrester, 1971; Sterman, 2000). A stock is usually managed via controlling
one of its flows. Usually, this flow is its inflow (Sterman, 2000; Yasarcan and Barlas,
2005; Yasarcan, 2010).

Stock management is the task of controlling stocks through the appropriate selection
of time and level of the decision flows (Maynard, 1971). This control flow, in this case
either inflow to or outflow from the stock, represents the actions resulting from the
decisions that we make. These decisions are generated by dynamic decision-making
heuristics aiming to close the discrepancy between the stock and its desired level. Usually,
a deviation from the desired state has associated costs or penalty (Sterman, 1989). In
addition to the discrepancy between the stock and its desired level, there are other inputs to
the decision making process. Ideally, the decision maker should also consider the loss flow
in his decisions and try to compensate for it while deciding on the amount of the control he
applies. Moreover, it takes time for the decisions to affect the stock that we manage in
realistic cases. This time difference between the control actions and their effects
complicate the task of stock management (Sterman, 2000, Chapter 17).

Inventory Management is an example of the generic stock management problem.
Inventory is the main stock of an inventory management system and its level is changed

via its flows; shipments and arrivals of goods. Shipments, which is driven by the sales, is

! Stocks are represented as boxes and flows are represented as arrows attached to these boxes.



the outflow from the inventory. Arrivals of goods, which is the delayed version of our
orders, is the inflow to the inventory. In production systems, this delay is caused by the
production process. In a supply chain, this delay would be the in-transit time between our
orders to our suppliers and arrival of goods. The presence of the delay between orders and
arrivals makes it difficult to maintain the inventory at its desired level. As a result, the level
of the inventory subject to control would usually show oscillatory behavior. Such behavior
is unwanted because that would mean overstocking and backlog from time to time, which
are both costly (Barlas and Ozevin, 2004; Yasarcan, 2010).

Glucose-insulin regulatory system can also be modeled as a stock management
problem. The blood glucose concentration level, which is the main stock of this system,
needs to be maintained within certain limits. As glucose concentration is a stock, the
change in its level depends on its flows. The inflows are glucose intake through digestion
and hepatic glucose production; the outflow is glucose utilization. Blood insulin
concentration level has a strong effect on glucose utilization. In a healthy person’s body,
blood glucose concentration is regulated within certain limits via regulating blood insulin
concentration, which is another important stock of the glucose-insulin regulatory system.
In patients with Diabetes Mellitus Type I, insulin cannot be produced sufficiently in the
pancreas, which leaves glucose unregulated. Therefore, these patients must control their
blood glucose concentration levels manually with insulin shots, typically after having a
meal. There are delays involved in the glucose-insulin regulatory system, which make it
difficult to maintain the concentrations of glucose and insulin within their desired ranges.
Therefore, the appropriate dosage and time of the insulin injection is difficult to determine.
Late or low insulin admission may cause a hyperglycemic state (excessive blood glucose
level), which is harmful to many organs, especially liver and the eyes. Early or high insulin
admission may end up in a hypoglycemic state (insufficient blood glucose level), which
may lead to impaired brain function, unconsciousness, and even death (Herdem and
Yasarcan, 2010).

Managing the fullness level at the dinner table is also a stock management problem.
There is a desired level of fullness; the states of being hungry and being overfilled are
unwanted. Eating is the inflow to the fullness level and the outflow is the digestion. The

fullness level is not perceived instantaneously as soon as a bite is swallowed. There is a



time difference between eating and the perception of its contribution to the fullness level.
Due to this delay, one could carry on eating, although the currently taken food would
suffice. This would cause an overshoot of the ideal fullness level, which may create

discomfort.

As mentioned in the previous paragraphs, there usually is a time difference between
a control action and its effect on the main stock. The total amount of control actions yet to
affect the main stock is called “supply line”. In the inventory management example given
earlier, the supply line would be the goods in transit and the supply line delay would be the
in transit time. In a workforce management system, the main stock would be the workforce
level, the supply line would be the new recruits undergoing their training period, and the
supply line delay time would be the duration of the training. In a production system, the
main stock would be the finished goods inventory, the supply line would be the work-in-
process inventory, and the supply line delay time would be the duration of the production
process. There are many factors that should be considered in the decision making process
such as the level of the main stock and the expected rate of the outflow. The level of the
supply line should also be considered in the decisions. Otherwise, depending on the values
of the decision making parameters, the main stock would either show an unwanted
oscillatory behavior or a poor response (i.e. the gap between the main stock and its ideal
level would reduce undesirably slowly). In system dynamics, mainly, there are three types
of delay structures. The supply line examples given in this paragraph are all in the form of
a material supply line delay. Stock management in the presence of such a delay structure is
well-studied and there exists dynamic decision making heuristics that can prevent the
unwanted behaviors mentioned before (Sterman, 1989; Sterman, 2000, Chapter 17
Yasarcan, 2003, Chapter 5; Yasarcan, 2011).



The figure below is the stock-flow diagram of the generic stock management

structure with a first order supply line delay.
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Figure 2.1. Stock management model with first order supply line.

The stock equations of this model are as follows:

SL,.5r =Sk, +(CF, — AF,)-DT (2.1)
sL,

St.or =S + ~LF, |-DT 2.2

or =51+ - L 22)

The equations of the flows and the rest of the variables are given below:

CF =LF +SA+SLA (2.3)

The control flow Equation 2.3 given above is called the anchor-and-adjust heuristic,

which is widely used in stock management.

A=S =S (2.4)
SAT
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SLA=w,, - S"SA_TSL (2.5)
AF =% (2.6)

LF =0 (2.7)
S$"=0 (2.8)
SL'=LF-ADT =0 (2.9)

Desired Stock and Loss Flow are taken to be zero, not only for the sake of simplicity
but also for the similarity of the model to the soft landing model presented in this thesis. In
an effort to obtain a second order differential equation for the stock-management model,
we first obtained Equations 2.12 and 2.13 from Equations 2.1-2.2 and 2.10-2.11.

§ = fim Seor =St (2.10)
DT-»0 DT
SL = ljm Steor —Sh 2.11)
DT —0 DT
§- Sk 2.12)
ADT
SL=CF — AF (2.13)

Later, we inserted Equations 2.3-2.9 into Equations 2.12-2.13 and simplified as

shown below:

S = St
ADT

—W, -SL-S  SL
SAT ADT

(2.14)

SL=SA+SLA+LF — AF = (2.15)

Finally, we transformed two first order differential equations (2.14-2.15) into a

second order differential equation (Equation 2.19) as shown below.



§-SL
ADT

SL

SL=S.ADT

S.ADT =

—Wg -S-ADT-S

S

ADT-S’+(1+WSL-

SAT

ADT

SAT

J

-S

1

+——-S=0

SAT

11

(2.16)

(2.17)

(2.18)

(2.19)

Equation 2.19 is used in Chapter 8 in developing the new heuristic proposed in this

thesis.
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3. THE SOFT LANDING MODEL

In this study, we first constructed a stock-flow model of the soft landing problem,
which is given in Figure 3.1. This diagram represents only the physical structure of the soft
landing problem; it does not represent the controller (e.g. a human decision maker, a
computer). Height (i.e. the vertical distance between the spacecraft and landing surface)
and Velocity (i.e. the vertical velocity) are the two stock variables (accumulations, system
state variables) in the model, which are represented as boxes (see Figure 3.1). The stock
Equations 3.2 and 3.4 are approximate integral equations. DT (simulation time step) in
these equations is set to 2 (1/512) seconds, which is sufficiently small in emulating
continuous time behavior. Velocity, which is a stock variable, is at the same time the one
and only flow of Height. Velocity has a single flow too; Acceleration. In our model
diagram (Figure 3.1) there are only two flows, which are represented by thick arrows with
a valve in the middle. Flows, in general, define the rate that stocks change. Hence, Height
is controlled via Velocity, Velocity via Acceleration (Equations 3.2 and 3.4). We select the
initial conditions for the spacecraft so as to observe important dynamics that the model can
generate (Equations 3.1 and 3.3). For example, if Height was set to a very low initial value,
it would not be possible to observe how the vehicle behaves before it enters the very final

stage of landing.

Height, =1000 [m]

(3.1)
Height,, ,; = Height, +Velocity, - DT [m] (3.2)
Velocity , =—10 [m/s] (3.3)

Velocity ,, ., =Velocity, + Acceleration- DT [m/s] (3.4)
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Figure 3.1. Stock-flow diagram of the model.

The thin arrows in Figure 3.1 represent causal functional relations that define the
non-stock variables. Accordingly, Net Force and Mass determine Acceleration (Equation
3.5). In our model, Mass is a constant because we ignore the change in the mass due to fuel
consumption (Equation 3.6). By doing so, we keep the model fairly simple to avoid an
extra load of information that would complicate the essential understanding of the structure
of the model. In Chapter 9, this assumption is relaxed in order to observe possible changes

in the dynamics caused by a variable mass.

Accelerati on = Net Force / Mass [m/ 52] (3.5)
Mass = 1000 [kg] (3.6)

Net Force = Gravitational Force + Damping Force + Control Force [N]  (3.7)
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Height is controlled via Velocity (Equation 3.2), Velocity via Acceleration (Equation
3.4), Acceleration via Net Force (Equation 3.5), and Net Force via Control Force
(Equation 3.7)% The control feedback loop structure also includes the controller, which
determines Control Force via Desired Control Force. The natural inputs to the controller
are Height and Velocity. A simplified causal loop diagram showing these relations and two
negative (counteracting) feedback loops within the control feedback loop structure can be
seen in Figure 3.2. Although, every control system involves delays in
measuring/perceiving actual conditions (Yasarcan, 2011), we ignore such delays in our
model for the sake of simplicity and assumed that the controller has instantaneous access to
the current values of Height and Velocity. We also ignore delays caused by actuators.
Explicitly modeling delays caused by actuators and measurement processes increases the
model complexity (Atay, 2009; Barlas, 2002; Forrester, 1961; Forrester, 1971; Michiels
and Niculescu, 2007; Sterman, 2000; Yasarcan, 2011; Yasarcan and Barlas, 2005).

+

Net Force \i
/ Acceleration
Control Force \+
+

Velocity

Desired Control
Force - +

\- ) Height

CONTROLLER

Figure 3.2. Causal-loop diagram of the control feedback loop structure.

Positive Height, Velocity, Acceleration, and force directions are upward from the

surface. Height equals zero means that the vehicle touches the ground, but the springs of

2 One Newton amounts to the force needed to increase the velocity of a one kilogram body of mass by one
meter per second in one second (N =kg - m/s?).
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the landing gear are at rest, so they bear no force at Height equals zero. Thus, when the
vehicle comes to a static equilibrium, the springs of the landing gear get compressed
balancing the weight (Gravitational Force) of the vehicle and Height becomes slightly less
than zero. See the assumption regarding the Suspension Spring Coefficient at the end of
this chapter.

Gravitational Force, Damping Force, and Control Force add up to the Net Force
acting on the vehicle (Equation 3.7). Gravitational Force acts on the vehicle due to mass
and gravity (Equation 3.8). Gravitational Acceleration is assumed to be constant during
landing; in the model, it does not change with the distance to the surface (Equation 3.9).
Corollary to constant Mass (Equation 3.6) and constant Gravitational Acceleration

(Equation 3.9), Gravitational Force is also a constant (Equation 3.8).

Gravitational Force = Mass- Gravitational Accelerati on [N ] (3.8)

Gravitational Accelerati on = —8.87 [m/ 52] (3.9)

The gravitational acceleration of the celestial body to be landed on is assumed to be
equal to the surface gravitational acceleration of Venus that is —8.87 m/s* (Equation 3.9).
Note that the assumed landing conditions other than the gravitational acceleration do not
resemble the conditions of Venus at all. Venus has a thick atmosphere, but we aimed to

capture the difficulty caused by the absence of drag. Hence, we assumed zero drag force.

The landing gear of the spacecraft is comprised of dampers and springs. Damping
Force, which is a result of the compression of the landing gear, is generated after the
spacecraft contacts the landing surface (Equation 3.10). To be able to correctly represent
the conditional existence of Damping Force, we also defined a variable named Spring
Compression, which represents the amount of compression of the landing gear (Equation
3.11). Inclusion of Spring Compression is in accordance with our aim of obtaining a
transparent model. Suspension Spring Coefficient, Suspension Damper Coefficient, and
Mass determine the damping behavior, which can be subcritical, critical, or supercritical.
The values of the two coefficients are selected such that a critically damped behavior is
obtained after the touchdown (i.e. after the touchdown, Height asymptotically approaches

to its equilibrium value).
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Damping Force =
0, Spring Compression =0
Suspension ) Suspension (3.10)
_ Spring . _tN]
Spring . . |—| Damper -Velocity, otherwise
.. Compression .
Coefficien t Coefficien t

: . (3.11)
—Height, otherwise

. . 0, Height >0
Spring Compression = [m]
Desired Control Force determined by the controller, which is explained in Chapter 4,
is an input to Control Force of the reverse force thruster. Control Force cannot be more

than the maximum force applicable by the thruster (Equations 3.12 and 3.13).

Control Force =
Desired Control Force, Desired Control Force < Max Force [N] (3.12)
Max Force, otherwise

Max Force = 30,000 [N] (3.13)

3.1. Selection of Landing Gear Parameters

Due to the final velocity at the instant of touchdown, the landing gear must bear
some force. Depending on the amount of the final (landing) velocity, the selection of
Suspension Damping Ratio (SDR) affects the force that the landing gear must bear. With
higher SDR values, the amount of the force, when the landing velocity approaches to zero,
decreases. However, with realistic landing velocities other than zero, a high SDR value
causes a quick increase in the force that the landing gear must bear. It is possible to
optimize SDR, given a landing velocity. For a comparison of optimum SDR values for
given landing velocities see Table 3.1. We determined the desired final velocity as —2 m/s
and selected —10 m/s as the boundary value between a hard landing and a crash. We used
the optimum SDR value for —10 m/s to be able to account for a possible deviation from the

desired velocity value. Choosing the optimum SDR value for —2 m/s would increase the
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maximum force applied on the landing gear at a final velocity of —10 m/s by about 40% as
compared to SDR’s optimum value at this velocity, 0.3328. Thus, to be on the safe side,
SDR is chosen as 0.3328 to minimize the force for the final velocity of —10 m/s. For

comparison see Figure 3.3.

Table 3.1. Comparison of sample landing velocities and corresponding SDR values

minimizing maximum force subjected to the landing gear.

Landing Optimum
Velocity (m/s) | SDR value
-10 0.3328

-5 0.4070

-2 0.6644

Suspension Damping Ratio = 0.3328  [unitless] (3.14)
Landing Gear Rest Compression = 0.5 [m] (3.15)
Suspension Spring Coefficient =17,740 [N/ m] (3.16)

Suspension Damper Coefficient = 2,803 [M} (3.17)
m

Landing Gear Rest Compression is the amount of the compression in the springs
caused solely by the weight of the spacecraft on the target celestial body. Together with
Gravitational Force and Mass, it determines the value of Suspension Spring Coefficient

and Suspension Damper Coefficient.

Suspension Spring Coefficient = — _Grawtatlonal Force : [N/m] (3.18)
Landing Gear Rest Compression

Suspension Damper Coefficien t =

Suspension
2 -4 Suspension Damping Ratio - || Spring -Mass [

Coefficien t

M} (3.19)
m
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Figure 3.3. Maximum Landing Force variation with different Landing Velocity values

displayed on five Suspension Damping Ratio Values.

3.2. Simplifying Model Assumptions

The summary of the simplifying model assumptions are given below:

e The movement of the spacecraft in the horizontal axes is not modeled. Spacecraft is
assumed to move only vertically.

e There is no atmosphere in the landing area, thus no air friction exists that would
cause a drag force on the vehicle (Equation 3.7).

e Gravitational Acceleration is assumed to be constant during landing; it does not
change with the distance to the surface (Equation 3.9).

e Mass is a constant, the change in the mass due to fuel consumption is ignored
(Equation 3.6).

e The landing gear has fixed specifications; Suspension Spring Coefficient and
Suspension Damper Coefficient are both constants.

e Suspension Spring Coefficient is selected so that the equilibrium value for Spring
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Compression is 0.5 meters (i.e. the equilibrium value for Height is —0.5 meters).

e Suspension Damper Coefficient is selected so as to minimize Maximum Landing
Force for Landing Velocity of —10 m/s. The selected value is less than one, which
creates underdamped behavior (i.e. after the touchdown, the vehicle shows slight
damping oscillations around its equilibrium height value).

e There are no delays caused by actuators; Desired Control Force generated by the
controller affects Control Force without a time lag (Equation 3.12).

e Information flow from the system to the controller is perfect and instantaneous; there
are no errors or delays caused by measurement processes.

3.3. Performance Measures

Performance measure equations are used to evaluate the landing. Landing Time gives

the duration of the landing beginning with the initial conditions until the moment of

touchdown (Equations 3.20-3.21). Landing Velocity is the velocity value at the moment of

touchdown (Equations 3.22-3.23). Max Landing Force reports the maximum force that is

generated by the landing gear after touchdown (Equations 3.24-3.25). Force Ratio gives a

scale of Maximum Landing Force comparing it to Gravitational Force (Equation 3.26).

Note that at static equilibrium the landing gear withstands Gravitational Force. Max

Acceleration gives the maximum acceleration of the vehicle during landing (Equations

3.27-3.28). Number of Sign Change in Force counts the directional change of force and

consequently also acceleration (Equations 3.29-3.30).

Landing Time, =0 [s] (3.20)
Landing Time,_, = LandingTime, +{ = -2nangTime =0, Height, <0 [s](3.21)
9 MEor = 9HMET o otherwise '
Landing Velocity , =0 [m/s] (3.22)
(Landing] ~
Veloci -
Y oo . . . . (3.23)
Landing . Velocity,, LandingVelocity, =0, Height, <0 [m/ s]
Velocity ) (0, otherwise

Max Landing Force, =0 [N] (3.24)
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Max Landing Force,, 5, =

Max Damping Force, Damping . Max Landing (3.25)
Landing | +4  -Max Landing Force, /' | Force Force tIN]
Force ) |0, otherwise
Force Ratio = MaX|mun_1 Léndlng Foree [unitless] (3.26)
— Gravitational Force
Max Acceleration, =0 |m/s?] (3.27)

Max Acceleration,, ,; =
Max Accelerati on, (3.28)

Accelerati on, _ Max
.|, Accelerati on, > _ )
+14 (-Max Acceleration, Acceleration ), [m/s ]
0, otherwise
Number of Sign Changein Forceuntil Landing, =0 [unitless] (3.29)

Number of Sign Changein Forceuntil Landing,,; =

Number of Sign

Changein Force | +1, Net Force, - Net Force,,,; <0

until Landing _ (3.30)
_ [unitless]

Number of Sign

Changein Force | , otherwise

until Landing

Instantaneous
Changein Net Force

j — ABS(Net Force,,,; — Net Force, )[N] (3.31)
t+DT

Max Instantaneous Change in Net Force,, ,; =

Max Instantaneous Change in Net Force, + (3.32)
Instant Max Instant Max
aneous Instantaneous | | aneous Instantaneous
Changein | | Changein '| Changein g Changein [N]
Net Force ), | Net Force . \ Net Force ), Net Force .
0, otherwise

Max Instantaneous Changein Net Force, =0 [N] (3.33)
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4. A MASS-SPRING-DAMPER BASED CONTROL HEURISTIC

The stock-flow model given in Figure 3.1 represents only the physical structure of
the soft landing problem. In this chapter, a mass-spring-damper based (MSD) heuristic is
assumed to be used by the controller in producing the values for Desired Control Force. In
essence, this heuristic is a PD (proportional-derivative) controller. The simulated behavior
generated by the model and the heuristic is discussed in the next chapter. The aim of this

chapter is to present the formulations of this heuristic.

Yasarcan and Barlas (2005) use a procedure in developing control heuristics for
control problems involving information delay or indirect control via a secondary-stock.
This procedure adapts a well known successful heuristic for control problems involving
material supply line delay, using the similarity of the differential equations of control
problems involving different types of delay structures. The model presented in Chapter 3
can be reduced to a second order linear differential equation because it contains two stock
variables, which are defined by approximate integral equations (Equation 3.2 and Equation
3.4). The mass-spring-damper model is well studied and it is known how to obtain a
certain behavior by adjusting the model parameter values. Furthermore, it can also be
represented by a second order linear differential equation. The heuristic is developed based
on the similarity of the differential equations of the mass-spring-damper model and the

model presented in the previous chapter®.

k
A
11
l_l
cC

Figure 4.1. Mass-spring-damper schematic.

® The authors of this paper acknowledge that it is Dr. I. Emre Kose who suggested to us to use the mass
spring damper model for this purpose.
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The schematic given in Figure 4.1 is a well known one. The differential equation of a
non-driven (i.e. Fexernar = 0) mass-spring-damper model with mass m, spring constant Kk,

and damper coefficient c is given below:
m-X+c-X+k-x=0 (4.1)

In Equation 4.1, xrepresents displacement, x represents velocity, and X represents
acceleration. This equation can be described by using stock-flow concepts, x and x being
the stocks and their associated flows being x and X respectively. Note that x is a flow

and a stock at the same time. As a further clarification, —k-x is the spring force (F,,,)

and —c-x is the damper force (F,,,..,)- The net force applied on the body of mass is the

amper

F

damper

sum of these two forces (F,, = + Fypring=—C- X—Kk-X). According to Newton’s

second law of motion mass times acceleration is equal the net force acting on the body
(F

net

=m-X). Therefore, mass times acceleration is equal to the sum of the spring force

and damper force. Hence, Equation 4.1 is obtained.

The damping ratio of the mass-spring-damper model is:

Damping Ratio = (4.2)

c
2-Am-k

The dynamics of the mass-spring-damper model can be underdamped, overdamped,
or critically damped depending on the value of Damping Ratio. For Damping Ratio values
under 1, the dynamic behavior is underdamped and for values over 1, it is overdamped.
The case where Damping Ratio is exactly 1 is called critically damped. When the dynamic
behavior is underdamped, the spring dominates the movement and the body of mass
oscillates. In the critically damped case, the body asymptotically approaches the rest
condition without an overshoot. In the overdamped case, the damper dominates the
dynamics and the body approaches the rest condition slower compared to the critically
damped case (Astrdom and Murray, 2008). As a summary, the importance of Damping
Ratio is that determining its value determines the dynamics of the mass-spring-damper

model.
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The suggested control heuristic is adapted from the mass-spring-damper model that
is defined by Equation 4.1. Height, Velocity, Acceleration, and Mass in our model
corresponds to x, X, X, and m in Equation 4.1, respectively. In the heuristic, we named

k as Height Coefficient and ¢ as Velocity Coefficient. Thus, Equation 4.1 becomes:

Veloci Height
Mass - Accelerati on + ty -Velocity + g. ) -Height =0  (4.3)
Coefficien t Coefficien t

Utilizing Newton’s second law of motion, the following can be written:

Veloci Height
Desired Net Force = — ty -Velocity — ant -Height [N] (4.4)
Coefficien t Coefficien t

The reverse force thruster should also counteract Gravitational Force. Hence,
Desired Control Force, which is the output of the heuristic and an input to Control Force

(see Equation 3.12 and Figure 3.1), can be given as:

Desired Control Force = Desired Net Force— Gravitational Force [N]  (4.5)
Height Coefficient =10 [N /m] (4.6)
Velocity Coefficient =200 [N -s/m] (4.7)

The parameters of the adapted heuristic, Height Coefficient and Velocity Coefficient
values are set to 10 [N /m] and 200 [N -s/m], respectively. Consequently, the damping

ratio for our model becomes:

. ) Velocity C oefficient 200
Damping Ratio = - — = =1
2. /Mass- Height Coefficient ~ 2-+/1000-10

(4.8)

The value of Damping Ratio means that the suggested control heuristic produces a
critically damped behavior for the height of the spacecraft. If Damping Ratio was less than

1, this would imply a possible overshoot (Height < 0). This is equivalent to saying that the
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vehicle can continue its normal motion below the ground level, which is not possible.
Therefore, in the soft landing model, if Damping Ratio is less than 1, a crash may occur.
On the other hand, a slower approach would also be undesired. Therefore, the heuristic
parameters are selected so that Damping Ratio becomes 1. For the simulated dynamics of
the soft landing model with the proposed heuristic, see Section 4.3.

4.1. Selection of the Controller Parameters

Decreasing Damping Ratio shortens the landing duration and increases the final
velocity (See Figure 4.2). Long landing durations and also great final velocity values
should be avoided. Therefore, a Damping Ratio value with a reasonable landing duration
and final (landing) velocity should be selected. The final velocity should be less than —10
m/s to be able to obtain a safe landing, so Damping Ratio should minimally be 0.8.
Damping Ratio value 1 has a special mathematical significance; it is the minimal value that
makes the vehicle asymptotically* seek the ground level and is not affected by the initial
conditions. Due to this mathematical property, Damping Ratio is taken as 1.

* To be mathematically correct, asymptotical seek of the goal takes indefinite time. This issue will be
addressed in the next sub-section.
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Figure 4.2. Landing Time and Absolute Landing Velocity variation with different Control
Force Damping Ratios.

4.2. Adjustments to the Mass-Spring-Damper Based Heuristic

As mentioned in the previous section, there is a problem with the asymptotical
approach of the heuristic with Damping Ratio = 1. The vehicle continues to hover on the
ground, a very small distance away from the surface. Additionally, the heuristic should
stop controlling after the first touchdown.

We used an adjusted version of Equation 4.5 so that upon touching the ground, the
thruster is off and is not switched on again. Equation 4.4 implicitly assumes that the
heuristic seeks Velocity = 0. We also changed this assumption by defining a constant

named Desired Final Velocity. These assumptions lead to the following equations:



26

Desired Net Force =

Veloci Desired Height (4.9)
- ty -| Velocity —| Final _| mee -Height  [N] '
Coefficien t . Coefficien t
Velocity
Desired Final Velocity =-1.2  [m/s] (4.10)

The existence of a negative Desired Final Velocity means that the vehicle
asymptotically seeks the ground level with a velocity, so the problem of the infinite

duration due to the asymptotical seek is avoided.

Landing State is an important structure within the model, which is included in some
performance measures’ evaluation (Equations 4.11-4.12). It also serves the purpose of
preventing the heuristics from trying to control the vehicle after the landing has occurred
(Equation 4.13).

Landing State, =0 [unitless] (4.11)
Landing State, ,; =
1, Landing State, =0, Height, <0 _ 4.12
Landing State, + g t I [unitless] (4.12)
0, otherwise
i Desired Gravitational
Desired — , Landing State =0
Control |={\ NetForce) |Force [N] (4.13)

Force 0, Landing State =1

4.3. Dynamic Behavior of Landing

As described previously, Height is controlled via Velocity (Equation 3.2), Velocity
via Acceleration (Equation 3.4), Acceleration via Net Force (Equation 3.5), and Net Force
via Control Force (Equation 3.7). The control feedback loop structure also includes the
controller, which determines Control Force applied by the reverse force thruster via
Desired Control Force (Figure 3.2). In order to obtain a reasonable value for Desired
Control Force, the controller should consider the system state variables (i.e. Height and

Velocity). Only by doing so is it possible to reach the aim of landing the spacecraft as
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gently and as fast as possible. Recall that we intentionally left out many real life
complexities in order to keep the model simple. Even under simplifying assumptions, the
control task still is not a straightforward one. Despite the fact that one of our simplifying
assumptions is that the values of the state variables Height and Velocity are
measured/perceived instantaneously and without error, it is necessary to develop a proper
control heuristic®. The main reason for the difficulty is that the control task requires
simultaneous control of Height and Velocity, which -due to the physical structure of the
problem- can only be indirectly affected by the reverse force thruster; Height and Velocity
have inertia; their values do not change instantaneously (see Figures 1.1 and 3.1 and
Equations 3.1-3.7). The addition of delays caused by actuators to the model would further

complicate the control task by amplifying the effect of the modeled inertia®.

The stock-flow model given in Figure 3.1 and defined by Equations 3.1-3.13
describes the structure of the soft landing problem excluding the controller. The
formulations of the heuristic suggested for the controller is explained in Chapter 4. The
dynamic behavior presented in Figures 4.3-4.7 is generated by simulating the model
including the controller with the proposed heuristic for 60 seconds (Equations 3.1-3.13 and
Equations 4.4-4.5).

The dynamic behavior of Height is given in Figure 4.3. Initially, the change in
Height (i.e. Velocity) is relatively fast and, as the spacecraft approaches to the surface, the
change in Height slows down. This behavior is comparable to the landing behavior of
Apollo 15 (see Figure 1.2). Hence, one can conclude that the behavior obtained by the
control heuristic is a reasonable one; by a fast initial decline, the heuristic tries to decrease
the time to land; by a slow final approach, it keeps the impact force well below harmful
values. At the instant of touchdown, the value of Velocity is —2.04 meters per second (—
7.35 km/h) creating a maximum impact force of circa 14,782 Newton, approximately 1.67
times the weight of the spacecraft on the target celestial body (8,870 Newton). The weight
corresponds to the model variable Gravitational Force, which is the force that the landing

% For example, see Yasarcan (2011) for the significance of and difficulties introduced by measurement or
perception delays.

® For example, see Yasarcan and Barlas (2005) for different types of delays between Desired Control Force
and Control Force (i.e. delay between “control flow” and “acquisition flow”, and delay between “desired
control flow” and “control flow”), and the effects of these delays.
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gear must bear when the spacecraft is standing still on the ground. The discussion on the

strength design of the spacecraft is beyond the scope of this study.

1: Height

1: 10009
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Figure 4.3. Dynamic behavior of Height.

The dynamic behavior of Velocity and Net Force acting on the vehicle during landing
are given in Figures 4.4 and 4.5, which further explain the dynamic behavior obtained by
the control heuristic. At first, the heuristic allows the spacecraft to accelerate in the
negative direction towards the landing surface (see Figure 4.4, approximately within the
time range of 0-10 seconds) by keeping Net Force negative (i.e. Control Force less than
Gravitational Force, see Figures 4.5 and 4.6). Aiming to decrease the duration of landing,
Velocity continues to increase during this initial period. After this initial phase, Velocity
decreases until the vehicle touches the surface (see Figure 4.4, approximately within the
time range of 10-55 seconds). In this later phase, the heuristic produces more Control
Force than Gravitational Force (Figure 4.5) resulting in a positive Net Force (Figure 4.6).
At the moment of landing, Control Force is turned off and Damping Force, which is zero
throughout the simulation up to this point, takes over and stops the vehicle (see Figures 4.5
and 4.6, approximately around 55 seconds).
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Figure 4.4. Dynamic behavior of Velocity.
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Figure 4.5. Net force acting on the vehicle during landing.
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Figure 4.6. Absolute values of the forces acting on the vehicle during landing.
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Figure 4.7. Dynamic behavior of Spring Compression during the final process of landing

(between seconds 55-60).
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5. BANG-BANG CONTROL HEURISTIC

The bang-bang principle relies on the fact that a system can be controlled in minimal
time properly using all available power throughout the whole control. A bang-bang system
is defined as a system that utilizes maximum power for control at all times. Additionally,
for systems with one degree of freedom there is an optimal one. This optimal one, if it

exists, is also the best of all possible systems in terms of minimal time (LaSalle, 1959).

A bang-bang control type heuristic was developed for our model. The purpose is to
let the vehicle descend up to a certain Height with only the effect of Gravitational Force in
an accelerating fashion, and then apply the maximum possible force until touchdown. Note
that; in our model, Control Force is in the positive Height direction and Gravitational
Force is the only force in the negative direction that can pull the vehicle to the ground.

Desired Control Force =

Desired \’ Maximum
Max Force, Velocity > —| Final > 2 - Height -| Possible N] (5.1)
Velocity Accelerati on
0, otherwise
Desired Final Velocity =—2  [m/s] (5.2)

(Maximum Possible

_ = (Max Force + Gravitational Force)/ Mass [m/s?] (5.3)
Acceleration

It is possible to determine the critical point after which the application of the
maximum force can decelerate the vehicle to the desired approach velocity. Up to this
critical point the vehicle accelerates as much as possible with the Gravitational Force
acting on the vehicle. Based on the work-energy principle, equating kinetic energy at the
critical point to the kinetic energy at the final moment and the work done on the vehicle
after the critical point, this point can be determined (see Equations 5.4 and 5.5).
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“m-v :%m-vf2+m-amax-xc [J] (5.4)

v -vi=2-a, -x, |m’/s’] (5.5)

When the critical distance is reached, Desired Net Force becomes Max Force;
decelerating the vehicle until touchdown (see also Equations 4.4, 3.12-3.13, 5.1-5.3).
Furthermore; with the determined initial condition, it is also possible to calculate the point,
as of which Max Force application is necessary (See Appendix A). Note that, the modified
Desired Control Force equation 4.13 and Landing State Equations 4.11-4.12 are also valid
in the bang-bang heuristic.

The dynamic behavior of Height is given in Figure 5.1. Initially, the change in
Height (i.e. Velocity) is relatively fast and, as the spacecraft approaches to the surface, the
change in Height slows down. At the instant of touchdown, the value of Velocity is —3.28
meters per second (-11.81 km/h) creating a maximum impact force of circa 17,869
Newton, approximately 2.01 times the weight of the spacecraft on the target celestial body
(8,870 Newton). Note that, Landing Velocity value —3.28 m/s obtained by the bang-bang
heuristic is due to a numerical error by the Euler Method used in the simulation. Ideally,
when time step is infinitesimally small, Landing Velocity would approach Desired Final

Velocity value of —2 m/s.

1: Height
1: 1000, -1
18
1 500,
1,
1 0 L
0.00 5.00 10.00 15.00 20.00

Page 1 Second

Figure 5.1. Dynamic behavior of Height in the bang-bang heuristic.
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The dynamic behavior of Velocity and Net Force acting on the vehicle during landing
are given in Figures 5.2 and 5.3, which further explain the dynamic behavior obtained by
the control heuristic. At first, the heuristic allows the spacecraft to accelerate with the
effect of Gravitational Acceleration in the negative direction towards the landing surface
(see Figure 5.2, approximately within the time range of 0-12 seconds) by keeping Net
Force equal to Gravitational Force (see Figures 5.3 and 5.4). Aiming to decrease the
duration of landing, Velocity continues to increase during this initial period. After this
initial phase, Velocity decreases until the vehicle touches the surface (see Figure 5.2,
approximately within the time range of 12-17 seconds). In this later phase, the heuristic
produces Control Force equal to Max Force (Figure 5.3) resulting in a positive Net Force
(Figure 5.4). At the moment of landing, Control Force is turned off and Damping Force,
which is zero throughout the simulation up to this point, takes over and stops the vehicle
(see Figures 5.3 and 5.4, approximately around 17 seconds).
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Figure 5.2. Dynamic behavior of Velocity.
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Figure 5.3. Net force acting on the vehicle during landing.
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Figure 5.4. Absolute values of the forces acting on the vehicle during landing.
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6. ANEW HEURISTIC

In this chapter, we have developed a new heuristic, combining the previously
discussed mass-spring-damper (MSD) and bang-bang heuristics and, additionally, it
includes the concept “weight of supply line” borrowed from stock management discussed

in Chapter 2.

The two-stock soft landing model (Figure 3.1) incorporating the mass-spring-damper
heuristic (given in Chapter 4), excluding nonlinearities caused by Max Force limitation
and touchdown processes, is similar to a second order stock management model (given in
Chapter 2); they can both be reduced to a second order linear differential equation.
Remembering Equation 2.19 from the generic stock management structure when anchor-
and-adjust heuristic is used in control and Equation 4.3 of the soft landing model when
mass-spring-damper heuristic is used in control:

ADT-§+(1+WSL- ADT} -

s+ ——.5=0
SAT SAT

) Velocity ) Height )
Mass - Accelerati on + . -Velocity + . -Height =0
Coefficien t Coefficient

We can match the variables of Equations 2.19 and 4.3:

Mass = ADT (6.1)
Height Coefficient = L (6.2)
SAT
. L. ADT
Velocity Coefficient =1+w,, -——— 6.3
ty L GAT (63)

Implementing the coefficients of the generic stock management structure, the

equation for the new heuristic becomes:
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ADT - Acceleration +| 1+ wj, ADT -Velocity +i- Height =0 (6.4)
SAT SAT

The difference between mass-spring-damper heuristic and the anchor-and-adjust
heuristic lies in the calculation of Velocity Coefficient. Mass-spring-damper heuristic
determines the coefficients by setting Damping Ratio to 1, so that critically damped
behavior is obtained. In stock management, however, Weight of Supply Line of the anchor-
and-adjust heuristic is usually set to 1 in order to guarantee non-oscillatory behavior
(Sterman, 1989; Yasarcan, 2011; Yasarcan and Barlas, 2005). Note that, this rule ensures

that the obtained behavior is not underdamped as shown by equation 6.6.

Damping Ratio, which is given by Equation 4.2, can also be expressed as given

below using the equivalency Equations 6.1-6.3:

. . 1 SAT ADT
Damping Ratio = =-| .[—— + W, -,|—— 6.5
PIng 2[VADT+SLVSATJ (6.5)

If Weight of Supply Line = 1, Equation 6.5 becomes:

Damping Ratio = 1 \/ SAT +\/ADT >1 (6.6)
2 ADT SAT

In the new heuristic, we use the following equation for Velocity Coefficient, which is
obtained by using the equivalency Equations 6.1 and 6.2 and setting Weight of Supply
Line = 1 in Equation 6.3:

Velocity Coefficient =1+ Mass - Height Coefficien t (6.7)

Remember that, in mass-spring-damper heuristic, the selection of Height Coefficient
as 10 and Damping Ratio as 1 (critical damping) equates Velocity Coefficient to 200 as
previously given in Chapter 4. In the new heuristic, the selection of Height Coefficient as

10 and Weight of Supply Line as 1, gives Velocity Coefficient of 10,001. The mass-spring-
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damper based heuristic would necessitate extensive amount of landing time for this new
value of Velocity Coefficient. In order to prevent this unwanted behavior, instead of using
Desired Final Velocity (Equation 4.10) in the equation of Desired Net Force (Equation
4.9), we define a new variable called Desired Velocity which is a dynamically calculated
variable (i.e. the value of Desired Velocity is calculated for each Height value). We derive
the formulation for Desired Velocity (Equation 6.8) from Equation 5.5, on which the bang-

bang heuristic (Equation 5.1) relies, as well. Thus, in this way, we combine the two

heuristics.
Behavior Positive
Smoothing |-| Available |- Height )
Desired
. . Factor Net Force .
Desired Velocity =—|2- +| Final | [m/s](6.8)
Mass .
Velocity

Similar to the adjusted Desired Net Force equation of the mass-spring-damper

heuristic (Equation 4.9), the Desired Net Force equation for the new heuristic becomes:

Desired Net Force =

_[Velocity ]-[Velocity—(DeSirEdD—(Height j-Height N] (6.9)

Coefficien t Velocity Coefficien t

Desired Control Force = Desired Net Force— Gravitational Force [N]  (6.10)

Behavior Smoothing Factor determines the fraction of the Positive Available Net
Force to be used in the calculation of Desired Velocity (Equation 6.8). Note that, Behavior
Smoothing Factor = 0 would not allow proper control and would set the Desired Velocity
equal to Desired Final Velocity at all Height values, whereas Behavior Smoothing Factor =

1 would make the new heuristic approach the bang-bang heuristic.

Positive Available Net Force = Max Force + Gravitational Force [N]  (6.11)
Behavior Smoothing Factor = 0.25  [unitless] (6.12)
Desired Final Velocity = —0.5 [m/s] (6.13)
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This heuristic achieves landing in 22.55 seconds with Landing Velocity —1.99 m/s.
The dynamic behavior of the landing achieved by the new heuristic is given in figures

below.
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Figure 6.1. Dynamic behavior of Height.
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Figure 6.2. Dynamic behavior of Velocity.
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Figure 6.3. Net force acting on the vehicle during landing.
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Figure 6.4. Absolute values of the forces acting on the vehicle during landing.
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7. TERMINAL GUIDANCE HEURISTIC FOR VERTICAL
MOVEMENT

In this chapter, a non-linear heuristic was adapted for the control of the vehicle

during descent. The non-linear heuristic was simplified from Kriegsman and Reiss (1962).

The remaining time required to reach the surface at any point during landing can be
roughly approximated as Height/Velocity. Although this approximation disregards the
value of Acceleration, approaching the surface the term Height/Velocity converges to the

real value of the remaining time.

Using the difference between Velocity and Desired Final Velocity and the remaining

time, formulated as Height/Velocity, Command Acceleration can be calculated as:

[mrs?] (7.1

Desired i
Command Acceleration = (Velocity —( D  Velocity

Final Velocity Height

From the above equation, we can write the following for the Desired Control Force:

Desired _ (Velocity — Desired Final Velocity )-Velocity - Mass N] (7.2)
Control Force Height '
Desired Final Velocity = -1.8 [m/s] (7.3)

In the simulation runs, an adjusted version of Equation 7.2 is used. This form of the
equation may result in the occurrence of a division-by-zero error in the final moments of
the approach. For this purpose, the value of Height/Velocity is set to —0.01 for Height
values smaller than 0.01. The modified equation becomes:
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Desired Control Force =
(Velocity — Desired Final Velocity )- Velocity - Mass

, Height > 0.01
Height ’ [N] (7.4)
(Velocity — Desired (I):g]fl Velocity )- Mass. Height < 0.01

The dynamic behavior of Height is given in Figure 7.1. Initially, the change in
Height (i.e. Velocity) is relatively fast and, as the spacecraft approaches to the surface, the
change in Height slows down. At the instant of touchdown, the value of Velocity is —2.05
meters per second (—7.38 km/h) creating a maximum impact force of circa 14,796 Newton,
approximately 1.67 times the weight of the spacecraft on the target celestial body (8,870
Newton).

1: Height
1: 100011
1
1 500
1
1 0 1
0.00 7.50 15.00 22.50 30.00

Page 1 Second

Figure 7.1. Dynamic behavior of Height in the terminal guidance heuristic.

The dynamic behavior of Velocity and Net Force acting on the vehicle during landing
are given in Figures 7.2 and 7.3, which further explain the dynamic behavior obtained by
the control heuristic. At first, the heuristic allows the spacecraft to accelerate towards the
landing surface (see Figure 7.2, approximately within the time range of 0-10 seconds) with
the effect of Gravitational Acceleration by keeping Desired Control Force less than
Gravitational Force (see Figures 7.3 and 7.4). Aiming to decrease the duration of landing,

Velocity continues to increase during this initial period. After this initial phase, Velocity
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decreases until the vehicle touches the surface (see Figure 7.2, approximately within the
time range of 10-22 seconds). In this later phase, the heuristic produces Control Force
greater than Gravitational Force (Figure 7.3) resulting in a positive Net Force (Figure 7.4).
At the moment of landing, Control Force is turned off and Damping Force, which is zero
throughout the simulation up to this point, takes over and stops the vehicle (see Figures 7.3

and 7.4, approximately around 22 seconds).
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Figure 7.2. Dynamic behavior of Velocity.
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Figure 7.3. Net force acting on the vehicle during landing.
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8. COMPARISON OF THE HEURISTICS AND THE SENSITIVITY
OF THE HEURISTICS TO DEVIATIONS FROM THE MODEL
ASSUMPTIONS

The mass-spring-damper (MSD) heuristic, the bang-bang heuristic, the new heuristic,
and the terminal guidance heuristic presented in the previous chapters have different
characteristics. The differences between the four heuristics and the differences in the

resulting behaviors are explained in this chapter. A summary of the comparison of the
heuristics is given in Table 8.1.

Table 8.1. Comparison of the four heuristics.

MSD bang-bang new heuristic ter_mmal
guidance
Landing Time 55.46 16.66 22.55 21.86
Landing Velocity -2.04 -3.28’ -1.99 -2.05
Max Landing Force 14782 17869 14677 14796
Changes in Control Force smooth catastrophic smooth smooth
limited only in limited only in limited only in
Operating Range limited the presence of | the presence of | the presence of
errors and delays | errors and delays | errors and delays
Sensitivity to errors in parameters low high low low
Sensitivity to variable readings low high medium medium
Sensitivity to a relatively minor . . .
actuator delay time low very high high medium-high

The qualitative comparison of the velocity Figures 4.4, 5.2, 6.2, and 7.2 gives a
preliminary insight to the difference in the smoothness of the control. Furthermore, the
comparison of the net force Figures 4.5, 5.3, 6.3, and 7.3 reveals that the bang-bang control
heuristic makes a sudden jump in the force, the new heuristic and the terminal guidance
heuristic show a quick increase in force, whereas the mass-spring damper heuristic changes

force gradually. The performance measure equations for Max Instantaneous Change in

" The difference between the Desired Final Velocity and Landing Velocity obtained by the bang-bang
heuristic is due to numerical errors caused by simulation. Landing Velocity would approach Desired
Final Velocity if the simulation time step would be shorter.
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Force (Equations 3.32 and 3.33) quantify momentary difference in force as 30,000 Newton
in the bang-bang heuristic, 563.9 Newton in the terminal guidance heuristic, 278 Newton
in the new heuristic and 3.4 Newton in the mass-spring-damper heuristic. In the mass-
spring-damper heuristic, the new heuristic and the terminal guidance heuristic, however,
Max Instantaneous Change in Force is only existent due to the discrete nature of the

simulation; it approaches zero as DT goes to zero.

An additional difference, which is not directly observable from the graphical
comparison, is that the bang-bang heuristic and the new heuristic have information about
the vehicle, its Max Force per se. The bang-bang heuristic basically determines the point of
force application and applies maximum force from that point on until the landing occurs.
Where the mass-spring-damper heuristic and the terminal guidance heuristic may generate
Desired Control Force values that are greater than Max Force; the bang-bang heuristic and
the new heuristic would not do so, as they rely on Max Force to create the Control Force.
Additionally, a general comparison of the heuristics’ force utilization during landing can
be seen from Figure 8.1. The constant maximum force use of the bang-bang heuristic is
easily observed from this graph. Another important observation is the flatness of the force
profile of mass-spring-damper heuristic and that Net Force decreases towards the end of
landing, whereas Net Force increases in both the new heuristic and the terminal guidance

heuristic in the final moments before the landing.
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Figure 8.1. Net Force profiles generated by the heuristics.
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Landing Velocity is another important criterion like Landing Time, and Equations
3.22 and 3.23 are necessary for monitoring it. In our simulations with a time step of 2°
(1/512) seconds, the bang-bang heuristic, the mass-spring-damper heuristic, the new
heuristic, and the terminal guidance heuristic landed with velocities of —3.28 m/s, —2.04
m/s, —1.99 m/s, and —2.05 m/s; respectively. At this point, it is worth noting that the
Landing Velocity of the bang-bang heuristic would decrease, if a shorter simulation time
step is used. Therefore, the difference between the Landing Velocity of the bang-bang
heuristic and the Landing Velocity values of the other heuristics is not an actual difference,

it is a simulation error.

A major drawback of the mass-spring-damper heuristic is that the landing behavior is
affected by the selection of the initial conditions. Depending on the initial conditions and
the value of Height Coefficient, the mass-spring-damper heuristic may require Control
Force values far greater than Max Force. This may cause for the heuristic to let the vehicle
accelerate towards the surface for too long, possibly causing a crash. This indicates a

limited operating range with the set parameters of the heuristic.

Looking at Table 8.1, another difference is the time the heuristics need to complete
the landing. The performance measure equations for Landing Time (Equations 3.20 and
3.21) aid this comparison. The bang-bang heuristic takes about 17 seconds to complete the
landing with the given initial conditions; the terminal guidance heuristic completes the
landing in about 22 seconds, the new heuristic takes about 23 seconds, and the mass-
spring-damper heuristic needs about 55 seconds. In fact, it is expected that the bang-bang
heuristic is the minimum-time solution for a problem of this sort. Note that, decreasing the
time to land and equivalently minimizing the fuel consumption are one of the main goals
of the heuristics. Naturally, as the bang-bang heuristic is time-optimal, it performs better
regarding these criteria. However, it should also be noted that, this optimality exists only
when the exact knowledge of the variables and parameters is possible. In order to achieve
this, all variables should be known without an error in magnitude and without a delay, all
the parameters’ values should be exactly correct, and there should not be a time difference
between the desired control force and the actual control force applied. Existence of any of

the mentioned deviations would cause the optimal heuristic to deteriorate in behavior,
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quickly and vastly. The comparison of the behaviors generated by the heuristics in the

presence of such errors is given in the next sections.

The duration of the landing in comparison to the bang-bang heuristic is slightly
longer in the new heuristic and the terminal guidance heuristic. However, they are not as
sensitive to the values of the parameters and variables and to minor actuator delays.
Compared to the mass-spring-damper heuristic, they are not as robust to an error in
parameter estimation, errors in variable readings, and the presence of an actuator delay.

Nevertheless, they land the vehicle in significantly less time (see Table 8.1).

8.1. An Estimation Error in one of the Parameters

To be able to compare the deterioration in the results, we assumed that the value of
Mass used in the heuristics is wrongly estimated. Four different types of mass estimation
errors are used to compare the behaviors of the heuristics. Two of these estimation errors
are absolute errors and the other two estimation errors are relative errors. In absolute
errors, the deviation from the real value of the parameter is constant, and in relative errors
the error is a percentage of the real value of the parameter. In this case, as the value of the
parameter is constant, the difference between the relative error and absolute error is
insignificant. This categorization of errors will be qualitatively different in the next
sections. Therefore, this differentiation is made in this section, as well. First, as absolute
errors, Mass is estimated as 950 kg and 1050 kg instead of 1000 kg, which are addressed as
-50 kg and +50 kg, respectively. Second, the relative errors are defined as —10% and

+10%, which are equivalent to absolute errors of —100 kg and +100 kg, in this case.

The dynamic behavior generated by the heuristics in the presence of the —50 kg error
is given in Figures 8.2, 8.3, 8.4, and 8.5. The Landing Velocity values for the mass-spring-
damper, bang-bang, new heuristics and the terminal guidance heuristic deteriorate to —2.21
m/s, —25.59 m/s, -2.11 m/s, and —-2.12 m/s; and the corresponding Maximum Landing
Force values are 15,146 N, 93,466 N, 14,938 N, and 14,951 N; respectively. These values
suggest that, in the case of a parameter estimation error, a great deterioration in the bang-
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bang heuristic occurs, whereas the rest of the heuristics succeed in making a reasonable

landing.

A summary with the important performance criteria of the landing is given in Table
8.2. An underestimation of Mass shortens Landing Time and causes an increase in Landing
Velocity. The change in Landing Velocity in the bang-bang heuristic is significant and
causes a crash, as expected. An overestimation of Mass lengthens Landing Time and
reduces Landing Velocity, in the bang-bang heuristic as well. The other heuristics manage

to tolerate these estimation errors.

Table 8.2. Comparison of the landing performances of the heuristics in the existence of an

error in the parameter estimate Mass.

Estimation Error in Mass

-50kg |50 kg -10% 10%
MSD Landing Time (s) 53.01 57.76 50.44 59.93
Landing Velocity (m/s) -2.21 -1.92 -2.45 -1.83
Bang-Bang Landing Time (s) 15.75 16.84 15.38 16.97
Landing Velocity (m/s) -25.59 -2.00 -36.14 -2.02
Landing Time (s) 22.16 22.93 21.77 23.30

New Landing Velocity (m/s) -2.11 -1.86 -2.29 -1.75
Terminal Landing Time (s) 21.45 22.27 21.03 22.67
Guidance Landing Velocity (m/s) -2.12 -1.98 -2.17 -2.00
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Figure 8.2. Landing behavior generated by the MSD heuristic in the presence of —50 kg

error in the Mass estimate.
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Figure 8.3. Landing behavior generated by the bang-bang heuristic in the presence of —50

kg error in the Mass estimate.
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Figure 8.4. Landing behavior generated by the new heuristic in the presence of —50 kg

error in the Mass estimate.
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Figure 8.5. Landing behavior generated by the terminal guidance heuristic in the presence

of —50 kg error in the Mass estimate.
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8.2. An Error in Height Readings

We assumed that there is an error in Height readings; four different types of height
estimation errors are used to compare the behavioral differences of the heuristics. Two of
these errors are in absolute terms, meaning that the reading is off by a constant value
throughout the landing. The other two are in relative terms, so that the read value is a
constant percentage of the current value at any time. This time, the relative error and the
absolute error are qualitatively different as the variable Height is changing during landing
and the amount of the relative error changes with it. The absolute errors are =10 m and +10
m and the relative errors are —10% and +10% in this case. For +10 m error, Height is read
by the heuristic 10 meters more than it is at all times during the simulation. The dynamic
behavior generated by the heuristics in the presence of this error is given in Figures 8.6,
8.7, 8.8, and 8.9. The Landing Velocity values for the mass-spring-damper, bang-bang, new
heuristics and the terminal guidance heuristic deteriorate to —2.86 m/s, —20.76 m/s, —11.36
m/s, and —14.46 m/s; and the corresponding Maximum Landing Force values are 16,721 N,
76,642 N, 44,296 N, and 54,890 N; respectively. Similar to the case with an error in the
parameter estimates, the behavior generated by the bang-bang heuristic deteriorates more
than the others. The new heuristic and the terminal guidance heuristic deteriorate as well,

while mass-spring-damper heuristic makes a reasonable landing.

In the existence of a negative absolute error new heuristic and bang-bang heuristic do
not succeed in making a landing. They hover a distance away from the ground as the
erroneous Height value they consider is very close to zero. It can be seen from Table 8.3
that the cases with a positive relative error are managed well by all heuristics except for the
bang-bang heuristic. All heuristics make a reasonable landing in the existence of a negative

relative error, as the error gives the heuristics more space than they consider is available.
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Table 8.3. Comparison of the landing performances of the heuristics in the existence of an

error in the variable reading Height.

Height Reading Error

-10 m 10m -10% 10%
MSD Landing Time (s) 61.63 51.46 62.85 49.02
Landing Velocity (m/s) |-1.21 -2.86 -1.81 -2.41
Landing Time (s) no landing |15.92 17.00 15.44
Bang-Bang _ _ _
Landing Velocity (m/s) | no landing |-20.76 -2.02 -34.41
N Landing Time (s) no landing |21.24 32.86 30.28
ew
Landing Velocity (m/s) | no landing |-11.36 -1.86 -2.11
Terminal Landing Time (s) 27.04 20.83 22.75 21.11
Guidance Landing Velocity (m/s) | -1.89 -14.46 -2.00 -2.15
1: Height
1: 100014
1: 500 1
1
1: 0
0.00 15.00 30.00 45.00 60.00
Page 1 Second

Figure 8.6. Landing behavior generated by the MSD heuristic in the presence of +10 m

error in Height reading.
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1: 1000, -1
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1,
1 0 -1
0.00 5.00 10.00 15.00 20.00

Page 1 Second

Figure 8.7. Landing behavior generated by the bang-bang heuristic in the presence of

+10 m error in Height reading.

1: Height
1: 10001
1: 500
1
1: 0 1 1
0.00 15.00 30.00 45.00 60.00
Page 1 Second

Figure 8.8. Landing behavior generated by the new heuristic in the presence of +10 m

error in Height reading.
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1: Height
1: 100011
1 500
1
1 0 1 1
0.00 15.00 30.00 45.00 60.00
Second

Figure 8.9. Landing behavior generated by the terminal guidance heuristic in the presence

of +10 m error in Height reading.

8.3. The Presence of an Actuator Delay

In this section, we assume that there is an overlooked factor present in the model, an
actuator delay (i.e. a delay in changing the level of the force created by the reverse force
thruster). In this case, actuator delay is the time difference between the force that a
heuristic demands and the application of that force. The behavior of the delayed output is
affected by the duration and the order of delay. The resulting behaviors of same duration (2
seconds), but different orders of delay are given in Figure 8.10. The input is assumed to be
10, a constant. Outputs of different orders of delay are all assumed to be equal to zero,
initially. Note that, discrete delay is also known as infinite order delay. It can be seen from
the figure that smaller orders react more quickly to the discrepancy, but it takes more time
for them to compensate for the whole difference.



1: Output 1st
10

3]

2: Output 2nd 3: Output 3rd

4: Output discrete

0.00 2.00

Second

6.00

8.00

10.00

Figure 8.10. Responses of different order delay structures to a step input.
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All four heuristics are evaluated with first order, second order, third order, and

discrete (infinite order) actuator delays, where the duration of delay is 2 seconds in all

cases. The landing performances of the heuristics with the inclusion of the four different

orders of actuator delay can be seen in Table 8.4. Also the dynamic behaviors of landing in

the presence of a discrete delay for different heuristics are given in Figures 8.11-8.14.

Table 8.4. Comparison of the landing performances of the heuristics in the existence of a 2

second actuator delay.

Actuator Delay
1storder |2nd order |3rd order |discrete
MSD Landing Time (s) 55.41 55.47 55.48 55.52
Landing Velocity (m/s) |-1.74 -1.75 -1.75 -1.75
Bang-Bang Landing Time (s) 14.20 14.10 14.06 13.96
Landing Velocity (m/s) |-99.71 -107.09 -110.42 -120.48
New Landing Time (s) 22.51 27.23 20.04 19.98
Landing Velocity (m/s) |-1.94 -20.96 -21.59 -40.62
Terminal Landing Time (s) 24.02 24.02 23.97 23.71
Guidance || . ding Velocity (mis) | -6.94 -10.75 1281 |-17.94
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The presence of delay creates no significant change in the behavior generated by the
mass-spring-damper heuristic (Figure 8.11) and the new Landing Velocity value generated
by this heuristic is around —1.75 m/s for all orders of delay. However, a huge deterioration
in the behavior generated by the bang-bang heuristic is observed. The new Landing
Velocity values generated by this heuristic are between circa —100 m/s in the best case and
—120 m/s in the worst case. The control applied by the bang-bang heuristic in the presence
of an actuator delay is minimal. As a result, the Landing Velocity values generated by the
bang-bang heuristic in the presence of a 2-second actuator delay are very close to the worst
achievable Landing Velocity value that is —133.59 m/s. The worst achievable value is
obtained by applying no control for the given initial conditions. New heuristic manages to
make a reasonable landing in the presence of a first order delay, but fails to do so in the
presence of higher order delays. This is due to the fact that, as the delay order increases,

the instability of oscillations around Desired Velocity increases (see Figure 8.15).

Generally, when control becomes insufficient, Landing Velocity increases whereas
Landing Time decreases, because of the early crash. A relatively big increase occurs in
comparing Landing Velocity values of the first order delayed case to the second order
delayed case of the new heuristic (Figure 8.16). The terminal guidance heuristic is able to
make a hard landing with a first order delay and in the higher orders the Landing Velocity

values increase to mild crashes.

Similar to the cases with an error in the parameter estimates and with an error in
readings, mass-spring-damper heuristic manages a safe landing, proving its superiority in

robustness as compared to the other heuristic.
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Figure 8.11. Landing behavior generated by the MSD heuristic in the presence of discrete

actuator delay.

Page 1

1: Height

1000, -1

500,

0.00

5.00 10.00
Second

15.00

20.00

Figure 8.12. Landing behavior generated by the bang-bang heuristic in the presence of

discrete actuator delay.
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Figure 8.13. Landing behavior generated by the new heuristic in the presence of discrete

actuator delay.
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Figure 8.14. Landing behavior generated by the terminal guidance heuristic in the

presence of discrete actuator delay.
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1: Desired Velocity  2: Velocity 1st 3: Velocity 2nd 4: Velocity 3rd

1: 20
2:
3:
4:
1: ‘
2: |
3: -40
4:
1:
2:
3:
4:

-100

0.00 7.50 15.00 22.50 30.00
Second

Figure 8.15. Velocity profiles of the new heuristic with different orders of delay.

1: Height
1: 100011
1: 500
1
1 0 1 1
0.00 15.00 30.00 45.00 60.00
Second

Figure 8.16. Landing behavior generated by the new heuristic in the presence of a second

order delay of 2 seconds.
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9. FUEL CONSUMPTION AND VARIABLE MASS

In previous chapters, it was assumed that the mass of the vehicle stays constant
during landing. In real cases, when spacecrafts exert force they decrease in mass as they
consume fuel for propulsion. With the inclusion of a decreasing predetermined amount of

fuel it will also be possible to compare the heuristics’ fuel consumptions.

This change in assumptions requires a modification to the previously explained soft
landing model. The variable Mass, which was a constant before, is parted into two. It is
comprised of the constant Vehicle Mass and the decaying Fuel Mass. In order to achieve
this, Fuel Mass is a stock variable with a single outflow. This outflow will depend on
Control Force and will be calculated based on a constant specific impulse. Specific
impulse is a performance parameter describing the engine efficiency. The mass outflow
from the engine is calculated based on the value of the specific impulse and the exerted
force during landing. An engine with a higher specific impulse would exert more thrust

with the same amount of fuel consumed (Huzel and Huang, 1992).
The equation for Mass instead of Equation 3.6 becomes:

Mass = Vehicle Mass + Fuel Mass  [kg] (9.1)

Fuel Mass,, ,; = Fuel Mass, + Changein Fuel Mass, - DT [kg] (9.2)

Generally, specific impulse is given as:

=~ [s] 9.3)

or,

[kg/s] (9.4)
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In these equations; F is the exerted force, I, is the specific impulse, g, is the

sp
gravitational acceleration constant 9.815 m/s* and m is the momentary change in mass.
For Specific Impulse, the real value from the rocket of the Apollo Lunar Module was taken.
The outflow of the stock variable Fuel Mass becomes:

Changein Fuel Mass =— Control Force [kg/s] (9.5)

Specific Impulse- g,

Specific Impulse =311 [s] (9.6)
9, =9815 |m/s?] (9.7)

The initial value of Fuel Mass is taken to be sufficient under the condition that the
Max Force is applied for 30 seconds. This amounts to an initial Fuel Mass of 300 kg.
Vehicle Mass is taken as 700 kg so that the initial Total Mass is the same with the constant

mass cases (i.e. cases without variable mass assumption).

Fuel Mass, =300  [kg] (9.8)
Vehicle Mass =700 [kg] (9.9)

The models with variable mass enable a comparison for the heuristics’ fuel
consumption to be made. The amount of fuel consumption is a better representation of the

efficiency of the heuristics than Landing Time.
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10. COMPARISON OF THE HEURISTICS UNDER VARIABLE
MASS ASSUMPTION

Each one of the four heuristics with all of the errors and deviations explained in
Chapter 8 has been simulated again under the variable mass assumption. The landing
performances of the heuristics under the variable mass assumptions given in Table 10.1.
Fundamentally, there is no behavioral difference between the landing performances of the

runs under constant and variable mass assumptions.

Mostly, Landing Time values of the models with variable mass are less than their
constant mass counterparts; an exception to this is the delayed versions of the mass-spring-
damper (MSD) heuristic. This exception can be explained by the delayed reduction in
Control Force for the mass-spring-damper heuristic before landing. Another exception to
the main observation about the decrease in Landing Time is obtained by the bang-bang
heuristic in the underestimated Mass case. As Fuel Mass is consumed, Control Force
becomes more effective and bang-bang heuristic makes a more reasonable landing,

decreasing Landing Velocity and increasing Landing Time.

The bang-bang heuristic’s force utilization qualitatively changes with variable mass
assumption. Under constant mass assumption, once the thruster is initiated, the bang-bang
heuristic uses the thruster at its maximum force until touchdown. When mass decays in the
form of fuel consumption, there is a need for the bang-bang heuristic to switch on and off
the thruster for many times until touchdown. This different force utilizations are compared
in Figure 10.1. Net Force is generated under constant mass assumption and Net Force 2 is
generated under variable mass assumption. It is worth mentioning that the maximum Net
Force increases as time passes due to the decrease in mass, and, thus, decrease in

Gravitational Force.
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1: Net Force 2: Net Force 2
1: 30000
2:

2
1
5 10000
L —2 i—2 —2
2: -10000
0.00 5.00 10.00 15.00 20.00
Second

Figure 10.1. Force utilization of the bang-bang heuristic when mass decays due to fuel

consumption.

Fuel consumption is the least in the bang-bang heuristic, as expected. New heuristic
and terminal guidance heuristic consume similar amounts of fuel, even in the cases where
they fail to achieve a reasonable landing; the only exception to this is the case with second-

order delay, where the difference in the fuel consumption of the two exceeds 10 kg.

Mass-spring-damper heuristic takes two to three times the fuel the other heuristics
take; disregarding the crash cases of the bang-bang heuristic, where there is almost no
control and, thus, a very small amount of fuel consumption. Consequently, if the Fuel
Mass were to be somewhat constrained, mass-spring-damper heuristic would be the first to
be affected. It can also be said that an overestimation of Mass increases fuel consumption,

while an underestimation of Mass decreases it.
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Table 10.1. Comparison of the landing performances of the heuristics with variable mass.

b Estimation Error in Mass Height Reading Error Actuator Delay
aserun

-50kg | 50kg | -10% 10% | -10m | 10m | -10% 10% 1st 2nd 3rd discrete
Landing Time (s) 54.72 52.22 | 57.07 | 49.94 | 58.95 | 61.16 | 50.71 | 61.76 | 48.79 | 57.94 | 57.96 | 57.97 57.98

MSD Landing Velocity (m/s) | -201 | 219 | -188 | -2.40 | -181 | -112 | -2.87 | -2179 | -2.36 | -137 | -1.37 | -1.38 | -138

Fuel Consumption (kg) | 149.20 |143.00 | 155.10 | 137.20 | 159.70 | 165.20 | 139.00 | 166.5 | 134.40 | 160.50 | 161.00 | 161.30 | 162.40

Landing Time (s) 16.61 | 1591 | 16.75 | 1545 | 16.87 | none | 15.86 | -16.90 | 1552 | 1420 | 1410 | 14.06 | 13.96

Bang-Bang || anding Velocity (m/s) | -238 |-19.28 | -2.01 |-3244 | -201 | none | -21.31| 2.01 | -30.42 | -99.46 | -106.94 | -110.30 | -120.45
Fuel Consumption (kg) | 4950 | 42.30 | 50.00 | 36.90 | 50.30 | 59.80° | 41.50 | -50.40 | 37.70 | 2560 | 25.30 | 2500 | 24.00

Landing Time (s) 2222 | 21.84 | 2259 | 21.47 | 22.94 | none | 20.98 | 22.97 | 2158 | 22.26 | 27.79 | 19.96 | 19.98

New Landing Velocity (m/s) | -209 | -2.28 | -1.97 | -2.43 | -187 | none | -11.85 | -1.98 | -2.23 | -123 | -23.10 | -2247 | -42.38
Fuel Consumption (kg) | 6500 | 63.90 | 66.00 | 62.80 | 67.00 | 86.50° | 58.60 | 67.00 | 63.20 | 73.30 | 83.10 | 71.10 | 66.00

Landing Time (s) 21.86 | 21.44 | 22.28 | 21.03 | 22,67 | 27.04 | 20.83 | 22.75 | 21.11 | 23.61 | 2361 | 2357 | 23.30

giﬁ;“;;‘i Landing Velocity (m/s) | -203 | -210 | -198 | 212 | -2.00 | -198 | -14.46 | -200 | -211 | -561 | -9.20 | -11.22 | -16.64

Fuel Consumption (kg) | 6400 | 62.80 | 65.10 | 61.70 | 66.20 | 79.10 | 57.40 | 6640 | 61.90 | 7150 | 70.50 | 7020 | 69.60

¥ In these cases, the vehicle does not land during the simulation run. Therefore, the values obtained are affected by the length of the simulation.
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11. CONCLUSION

In this thesis, we study the soft landing of a vehicle on a surface in the absence of
atmospheric molecules and we assume the landing process is controlled only by a reverse
force thruster. The focus of the study is only on the movement in the vertical axis.
Therefore, we ignore the movement of the spacecraft in the horizontal axes. We first build
a soft landing model under these main assumptions. The model and the modeling process
is discussed in full detail including the analyses for parameter value selection. Later, we
derive three heuristics for the control of the soft landing model; the mass-spring-damper-
heuristic, the bang-bang heuristic, and a new heuristic, which is a combination of the first
two. As a fourth heuristic, the terminal guidance heuristic is adapted from the work of
Kriegsman and Reiss (1962). We disclose the entire derivation process for and discuss the
behaviors obtained by the four heuristics. We tested the performances of these heuristics in
the presence of an error in the parameter estimates; in the presence of an error in the height
readings; and in the presence of an overlooked factor such as a delay in changing the level

of the force created by the reverse force thruster, which is known as actuator delay.

The mass-spring-damper based control heuristic requires a longer landing time
compared to the other two heuristics, but it is more robust compared to the bang-bang
control heuristic in the sense that it is less sensitive to the errors in parameter values, errors
in readings, and presence of an actuator delay. Note that even in the absence of errors and
delays, mass-spring-damper heuristic may crash the spacecraft depending on the initial
conditions, which is intolerable. Bang-bang heuristic minimizes the time needed to land
under the assumed conditions. However, this aggressive management of the time needed to
land may make it crash the spacecraft under realistic conditions (e.g. a small deviation

from assumed conditions).

The new heuristic is developed by including the weight of supply line concept from
the system dynamics literature, and combining the mass-spring-damper based heuristic and
the bang-bang heuristic. The new heuristic is not superior to the mass-spring-damper
heuristic and the bang-bang heuristic regarding all performance criteria. However, it is

exempt from the intolerable weaknesses of the both (i.e. high dependency on initial
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conditions of the mass-spring-damper heuristic and the high sensitivity to errors and delays

of the bang-bang heuristic).

An overestimation of Mass causes no problems for any of the heuristics, including
the bang-bang heuristic; whereas an underestimation of Mass causes the bang-bang

heuristic to crash.

Absolute errors in Height readings are problematic in all heuristics except mass-
spring-damper heuristic. An absolute underestimation of Height causes the bang-bang
heuristic and the new heuristic not to land, the terminal guidance heuristic makes a
reasonable landing. An absolute overestimation of Height, however, causes the three
heuristics except mass-spring-damper heuristic to crash. Relative errors in Height reading
are not problematic for the heuristics except for the relative overestimation case in the
bang-bang heuristic.

The presence of an actuator delay causes no problems for the mass-spring-damper
heuristic and the new heuristic is able to handle first-order delay. Generally, with higher
orders of delay, the landing gets more problematic. The behavior resulting from the bang-
bang heuristic is very poor; the landing performance is almost like the case where no
control is applied at all. The new heuristic and the terminal guidance heuristic attain
positive velocities during simulation, which means they show undesired oscillatory

behavior.

The deteriorations observed in the cases under variable mass assumption are similar
to the deteriorations observed in the cases with constant mass assumption; there is no
qualitative difference between the behaviors obtained under both assumptions, ceteris
paribus. Generally, Landing Time values of the models with variable mass are less than
their constant mass counterparts; an exception to this is the delayed versions of the mass-
spring-damper heuristic. This exception can be explained by the delayed reduction in
Control Force for the mass-spring-damper heuristic before landing.

Fuel consumption is the least in bang-bang heuristic, as expected. New heuristic and

terminal guidance heuristic consume similar amounts of fuel, even in the cases where they
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fail to achieve a reasonable landing; the only exception to this is the case with second-
order delay, where the difference in the fuel consumption of the two exceeds 10 kg. Mass-
spring-damper heuristic takes two to three times the fuel the other heuristics take;
disregarding the crash cases of the bang-bang heuristic, where there is almost no control
and, thus, low fuel consumption. Consequently, if Fuel Mass were to be somewhat
constrained, mass-spring-damper heuristic would be the first to be affected. It can also be
said that an overestimation of Mass increases fuel consumption, while an underestimation

of Mass decreases it.

The main performance criteria are Landing Time, Landing Velocity, whether or not
the operating range is limited, and robustness. According to this study, none of the
heuristics presented in this thesis satisfy all the performance criteria. A heuristic that is the
best according to one criterion may be the worst in the other. Hence, none of the heuristics
IS superior to the rest in all aspects.

The mass-spring-damper heuristic is robust in the sense that it is the least sensitive to
the deviations from the model assumptions. However, Landing Time for this heuristic is
the longest, which also results in high fuel consumption. Moreover, this heuristic has a
limited operating range; it crashes the vehicle if the initial conditions are outside of the

operating range.

The bang-bang heuristic gives the shortest landing time, but it is not robust in the
sense that it is sensitive to all types of deviations from the model assumptions such as an
error in the mass estimate, an error in the height reading, and the presence of an actuator

delay. Even a minor deviation is highly risky for this heuristic.

The new heuristic introduced in this thesis aims to avoid the weaknesses of the mass-
spring-damper and bang-bang heuristics. As a result, this heuristic gives a reasonable
Landing Time, does not have a limited operating range, and it is less sensitive to the
deviations from the model assumptions than the bang-bang heuristic. However, it does not
outperform the mass-spring-damper and bang-bang heuristics in all performance criteria.
Although, the formulations and the dynamic behaviors of the terminal guidance heuristic

and the new heuristic are different, their landing performances are similar. Therefore, the
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main conclusions about the new heuristic regarding the performance criteria are also valid

for the terminal guidance heuristic.

According to this study, it is very difficult to find a control heuristic that satisfies all
performance criteria even for a very basic model of soft landing. Especially, the existence
of an actuator delay further complicates this control problem. As a future study, we are
planning to improve the new heuristic and the terminal guidance heuristic so as to obtain a

reasonable behavior at least in the presence of a minor actuator delay.
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APPENDIX A: CALCULATION OF THE CRITICAL POINT IN
THE BANG-BANG HEURISTIC

The Kinetic energy available at the critical point should be cancelled by the work

done by the resultant force.

Gravitational Initial Critical Mass ( Initial ?
B =- : N + : 1 [Pl AL
Force Height Height 2 Velocity

Mass ( Desired Final \’
Beo == (V . j [3] (A2)
elocity
Max Gravitational Critical
Force Force Height
W =AE, [3] (A.4)

Plugging in model parameters and initial conditions gives out a Critical Height of
297.27 meters.
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