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ABSTRACT 

CONTROL HEURISTICS FOR THE SOFT LANDING PROBLEM 

 

 

In this thesis, we first construct a basic model representing the soft landing problem. The 

aim of the modeling effort is to transparently represent the process of landing a spacecraft 

on the surface of a celestial body. The process of landing is an interesting problem because 

there are two main contradictory performance criteria to be met simultaneously; the 

landing duration should be as short as possible, but at the same time crashing the spacecraft 

to the surface should be avoided. In this work, we studied four different control heuristics 

for the soft landing problem. The first heuristic is adapted from the mass-spring-damper 

model using the similarity of the equations of the soft landing model developed to the 

equations of the mass-spring-damper model. The second one is a bang-bang heuristic that 

first allows the spacecraft to fall freely, but after a critical point is reached, it uses the 

reverse force thruster at its maximum power until the touchdown. Bang-bang heuristic 

minimizes the time needed to land. The third heuristic is a combination of the bang-bang 

and mass-spring-damper heuristics. This new heuristic also borrows the concept Weight of 

Supply Line from System Dynamics literature. This new heuristic reconciles the two 

heuristics reducing their respective problematic behaviors. The last heuristic is the terminal 

guidance heuristic. The mass-spring-damper, bang-bang, new, and terminal guidance 

heuristics are compared in terms of their performances in the presence of an error in the 

parameter estimates, an error in the height readings, and an overlooked factor such as a 

delay in changing the level of the force created by the reverse force thruster, which is 

known as actuator delay. Terminal guidance heuristic and new heuristic lie in between 

mass-spring-damper heuristic and bang-bang heuristic in the sense that they require a more 

reasonable time to land as compared to the mass-spring-damper heuristic and they are not 

as sensitive as the bang-bang heuristic to the deviations from the original model. Finally, 

constant mass assumption is relaxed to observe a potential change in the behaviors 

generated by the heuristics, including the deviations due to errors and actuator delay. This 

relaxation also enables a comparison for the fuel consumption values of the heuristics. 
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ÖZET 

YUMUŞAK İNİŞ PROBLEMİ İÇİN SEZGİSEL KONTROL 

YAKLAŞIMLARI 

 

 

Bu tezde ilk önce yumuşak iniş problemini temsil eden bir model kuruyoruz. Modelleme 

çabasının amacı bir uzay aracının bir gökcismine inişini şeffaf bir şekilde temsil etmektir. 

İniş süreci ilginç bir problemdir çünkü iki karşıt performans ölçütü mevcuttur; iniş süresi 

mümkün olduğu kadar kısa olmalı, fakat aynı zamanda uzay aracının yüzeye çarpmasından 

da kaçınılmalıdır. Bu çalışmada, dört farklı sezgisel kontrol yaklaşımı inceledik. İlk 

sezgisel yaklaşım, yumuşak iniş modeliyle kütle-yay-sönüm modelinin denklemlerinin 

benzerliğinden yararlanılarak kütle-yay-sönüm modelinden uyarlandı. İkinci sezgisel 

yaklaşım ise önce uzay aracının serbestçe düşmesine izin veren, fakat bir kritik noktaya 

ulaştıktan sonra iticiyi iniş anına dek en yüksek güçte kullanan iki konumlu bir sezgisel 

yaklaşımdır. İki konumlu sezgisel yaklaşım, iniş süresini enküçükler. Üçüncü sezgisel 

yaklaşım, iki konumlu ve kütle-yay-sönüm sezgisel yaklaşımlarının bir kombinasyonudur. 

Ayrıca, bu yeni sezgisel yaklaşım Sistem Dinamiği literatüründen Tedarik Hattı Ağırlığı 

kavramını ödünç alır. Son sezgisel yaklaşım ise nihai kılavuz sezgisel yaklaşımıdır. Kütle-

yay-sönüm, iki konumlu, yeni, ve nihaî kılavuz sezgisel yaklaşımları performansları 

bakımından değişik durumlarda karşılaştırılmaktadırlar. Sözü edilen değişik durumlar; bir 

parametre ölçüm hatasının, yükseklik göstergelerinin okunmasında yapılan bir hatanın ve 

iticinin gücünün değiştirilmesinde tahrik düzeneği gecikmesi gibi bir etmenin gözden 

kaçırılmasının mevcudiyetidir. Nihai kılavuz sezgisel yaklaşımı ve yeni sezgisel yaklaşım, 

kütle-yay-sönüm yaklaşımına göre daha mantıklı bir iniş süresine ihtiyaç duymaktadırlar. 

Orijinal modelden sapmalara karşı ise iki konumlu sezgisel yaklaşıma göre daha 

dayanıklıdırlar. Dolayısıyla, nihai kılavuz yaklaşımı ve yeni sezgisel yaklaşım bu iki 

özellik açısından kütle-yay-sönüm ve iki konumlu sezgisel yaklaşımlarının arasındadırlar. 

Son olarak, sezgisel yaklaşımların davranışlarındaki potansiyel değişikliği gözlemlemek 

sabit kütle varsayımı gevşetilmiştir. Farklı sezgisel yaklaşımların yakıt sarfiyatlarının 

karşılaştırılmasını da mümkün kılan bu varsayım değişikliği, hataların ve tahrik düzeneği 

gecikmesinin mevcudiyetinde de incelenmiştir. 
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1.  INTRODUCTION 

Soft landing is an interesting and challenging problem in space exploration. The 

process of landing is a challenging task because there are two main contradictory 

performance criteria to be met simultaneously; the landing duration should be as short as 

possible, but at the same time crashing the spacecraft to the surface should be avoided 

(Liu, Duan, and Teo, 2008). In order to achieve a fast and safe landing on the surface of a 

celestial body, the landing process should be controlled. When landing on celestial bodies 

with no atmosphere (e.g. the moon), deceleration strategies that rely on the drag force (e.g. 

a parachute) do not work due to the absence of atmospheric molecules. Therefore, a 

reverse force thruster, which will decelerate the vehicle, is needed (see Figure 1.1). The 

design of reverse force thrusters for spacecrafts first came into focus during the 

establishment of the space programs of the Soviet Union and USA (Rosen, Schwenk 

1959). Manned lunar discovery projects set on with the landing of Apollo 11 on the moon 

in 1969 and peaked in the 1970s. The last manned vehicle on the moon was in 1972. 

However, the interest on landing on the moon continues with current and future unmanned 

projects from several countries (USA, China, South Korea, Japan, Russia, India, Iran, UK, 

EU). The design interest in lunar vehicles and their descent stages is not lost. Human return 

to the moon is planned for the exploration of further destinations including Mars among 

others (Wu et al. 2007). 

 

Guidance algorithms for the navigation and the descent on the moon have been 

studied. Linear and quadratic second-order differential equations (Klumpp, 1974; 

Kriegsman and Reiss, 1962) controlling the descent have been proposed among others. It is 

worth mentioning that the algorithm proposed by Klumpp has been used by NASA in the 

six manned lunar landings and, later, published in 1974. 

 

Fuel optimal landing strategies have also been studied early on during the space 

program by government related agencies and later by scientists in the field, revealing that 

the minimum time problem is equivalent to the minimum fuel problem. These past studies 

revealed bang-bang control solutions. (Meditch, 1964; Flemming and Rishel, 1975; 

Cantoni and Finzi, 1980). 
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Figure 1.1. Free body diagram of the vehicle with a control force (F) generated by the 

reverse force thruster and the gravitational force (GF). 

 

A reasonable landing process requires a control heuristic that will ensure the safety 

of the spacecraft, which practically means a soft touchdown of the spacecraft to the surface 

of the celestial body at the end of the landing process. Note that the landing force (the force 

created at the time of touchdown) is a complex result of the landing velocity (the velocity 

with which the spacecraft touches the surface), the landing gear parameters of the 

spacecraft, the mass of the spacecraft, and the gravitational force. Out of these four 

important components that determine the landing force, a control heuristic can only have 

an effect on the landing velocity. Moreover, this effect is indirect. Control heuristic 

determines the control force, control force results in the net force, net force determines the 

acceleration, acceleration gradually adjusts the velocity, and the value of velocity at the 

time of touchdown becomes the landing velocity. Therefore, it is not an easy task to 

manage the landing velocity at around a desired level. Moreover, the heuristic that will be 

employed should also manage the length of the time needed to land at a reasonably low 

value because a long landing duration requires extensive fuel usage. The two criteria, 

minimizing the landing velocity and minimizing the length of the time needed to land, are 

contradictory, which makes the soft landing problem a challenging task. A control heuristic 
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aiming to satisfy the two criteria, should allow the vehicle descend to the surface rather 

quickly, but make it decelerate safely to low velocity values before the instant of landing 

(Liu, Duan, and Teo, 2008; Zhou et al., 2009). The landing dynamics of Apollo 15 is an 

example of this strategy (Figure 1.2).  
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Figure 1.2.  The landing dynamics of Apollo 15. 

 

In plotting the dynamics observed in Figure 1.2, we connected to the Apollo 15 entry 

of the Wikipedia website (http://en.wikipedia.org/wiki/Apollo_15; accessed on 16 

September 2011) and time coded the landing video on the page 

(http://en.wikipedia.org/wiki/File:Apollo_15_landing_on_the_Moon.ogg; accessed on 16 

September 2011). Note that, Apollo 15 was the fourth of the six manned vehicles to land 

on the Moon (30 July 1971). 

 

In this thesis work, we first construct a basic model representing the soft landing 

problem. The aim of the modeling effort is to transparently represent the process of landing 

a spacecraft on the surface of a celestial body. We modeled the soft landing challenge 

using System Dynamics (SD) simulation methodology because SD has a strong focus on 

the explicit representation of the problem related elements of a system (Barlas, 2002; 

Forrester, 1961; Forrester, 1971; Sterman, 2000). The SD methodology is briefly presented 
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in Chapter 2, with the inclusion of the stock-flow diagram and the equations for the generic 

stock management structure. The model and its assumptions are presented in Chapter 3. 

Many real life complexities such as delays caused by actuators and measurement processes 

are not represented in the model. Even under the simplifying model assumptions, the main 

goal of the soft landing problem still remains a challenging one because the two state 

variables “height” and “velocity” can only be indirectly controlled.  

 

In Chapter 4, we present a control heuristic (i.e. control law) adapted from the mass-

spring-damper model. The mass-spring-damper based control heuristic is adapted from the 

mass-spring-damper model using the similarity of the equations of the soft landing model 

given in Chapter 3 to the equations of the mass-spring-damper model; both models can be 

reduced to a second order linear differential equation. The behavior obtained from the 

mass-spring-damper based control heuristic is discussed in detail in Chapter 4. 

 

The bang-bang heuristic dynamically calculates a critical point. It first allows the 

spacecraft to fall freely, but after the critical point is reached, it uses the reverse force 

thruster at its maximum power until the touchdown (Meditch, 1964). The bang-bang 

heuristic and the corresponding landing dynamics are discussed in Chapter 5. 

 

In Chapter 6, a new heuristic is developed combining elements from the bang-bang 

heuristic and the mass-spring-damper heuristic. Additionally, this new heuristic includes 

the weight of supply line concept used in the anchor-and-adjust heuristic, which is widely 

used in stock management. In Chapter 2, anchor-and-adjust heuristic is presented together 

with the generic stock management structure. Although, this new heuristic is not superior 

to the bang-bang heuristic and the mass-spring-damper heuristic in every aspect, it 

succeeds in improving their most problematic responses. Note that, both the mass-spring-

damper heuristic and the anchor-and-adjust heuristic are in essence proportional derivative 

feedback control applications. 

 

In Chapter 7, a heuristic adapted from Kriegsman and Reiss (1962), terminal 

guidance heuristic, is presented. The core of the formulation of this heuristic is the ratio of 

the square of the velocity to the height. This ratio is used to calculate command 
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acceleration for the vehicle and the command acceleration is used to obtain the control 

force. 

 

The mass-spring-damper heuristic, the bang-bang heuristic, the new heuristic, and 

the terminal guidance heuristic have different characteristics. The resulting behaviors of 

the four heuristics are compared in Chapter 8. The strengths and weaknesses of the 

heuristics are also discussed in Chapter 8 using three different types of deviations from 

assumptions (an error in the parameter estimates; an error in the state variable readings; a 

delay in changing the level of the force created by the reverse force thruster, which is 

known as actuator delay), each containing four scenarios. 

 

In Chapter 9, the constant mass assumption is relaxed. A variable mass is defined 

based on fuel consumption, which is calculated depending on the value of the used force. 

Some equations given in Chapter 3 are modified to reflect this assumption change. 

 

The comparison of the behaviors of the four heuristics under the variable mass 

assumption, with the same three types of deviations discussed in Chapter 8, is done in 

Chapter 10. The differences between the performances of the models with and without 

constant mass assumption are also discussed in Chapter 10. 
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2.  THE STOCK MANAGEMENT STRUCTURE 

System Dynamics is an interdisciplinary methodology for modeling and 

understanding how complex systems change over time (Barlas, 2002; Barlas and Yasarcan, 

2006; Forrester, 1961; Forrester, 1971; Sterman, 2000). Stock Management is one of the 

important and well-studied problems in System Dynamics (Yasarcan and Barlas, 2005; 

Yasarcan, 2010). Main modeling objects are stocks and flows
1
 in System Dynamics. 

“Stocks are accumulations ... Stocks are altered by inflows and outflows” (Sterman, 2000, 

p. 192). Stocks characterize the state of the system; they give systems inertia and memory. 

A flow or flows attached to a stock, however, describe the way the stock changes over time 

(Barlas, 2002; Forrester, 1971; Sterman, 2000). A stock is usually managed via controlling 

one of its flows. Usually, this flow is its inflow (Sterman, 2000; Yasarcan and Barlas, 

2005; Yasarcan, 2010). 

 

Stock management is the task of controlling stocks through the appropriate selection 

of time and level of the decision flows (Maynard, 1971). This control flow, in this case 

either inflow to or outflow from the stock, represents the actions resulting from the 

decisions that we make. These decisions are generated by dynamic decision-making 

heuristics aiming to close the discrepancy between the stock and its desired level. Usually, 

a deviation from the desired state has associated costs or penalty (Sterman, 1989). In 

addition to the discrepancy between the stock and its desired level, there are other inputs to 

the decision making process. Ideally, the decision maker should also consider the loss flow 

in his decisions and try to compensate for it while deciding on the amount of the control he 

applies. Moreover, it takes time for the decisions to affect the stock that we manage in 

realistic cases. This time difference between the control actions and their effects 

complicate the task of stock management (Sterman, 2000, Chapter 17). 

 

Inventory Management is an example of the generic stock management problem. 

Inventory is the main stock of an inventory management system and its level is changed 

via its flows; shipments and arrivals of goods. Shipments, which is driven by the sales, is 

                                                 

1
 Stocks are represented as boxes and flows are represented as arrows attached to these boxes. 
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the outflow from the inventory. Arrivals of goods, which is the delayed version of our 

orders, is the inflow to the inventory. In production systems, this delay is caused by the 

production process. In a supply chain, this delay would be the in-transit time between our 

orders to our suppliers and arrival of goods. The presence of the delay between orders and 

arrivals makes it difficult to maintain the inventory at its desired level. As a result, the level 

of the inventory subject to control would usually show oscillatory behavior. Such behavior 

is unwanted because that would mean overstocking and backlog from time to time, which 

are both costly (Barlas and Ozevin, 2004; Yasarcan, 2010). 

 

Glucose-insulin regulatory system can also be modeled as a stock management 

problem. The blood glucose concentration level, which is the main stock of this system, 

needs to be maintained within certain limits. As glucose concentration is a stock, the 

change in its level depends on its flows. The inflows are glucose intake through digestion 

and hepatic glucose production; the outflow is glucose utilization. Blood insulin 

concentration level has a strong effect on glucose utilization. In a healthy person’s body, 

blood glucose concentration is regulated within certain limits via regulating blood insulin 

concentration, which is another important stock of the glucose-insulin regulatory system. 

In patients with Diabetes Mellitus Type I, insulin cannot be produced sufficiently in the 

pancreas, which leaves glucose unregulated. Therefore, these patients must control their 

blood glucose concentration levels manually with insulin shots, typically after having a 

meal. There are delays involved in the glucose-insulin regulatory system, which make it 

difficult to maintain the concentrations of glucose and insulin within their desired ranges. 

Therefore, the appropriate dosage and time of the insulin injection is difficult to determine. 

Late or low insulin admission may cause a hyperglycemic state (excessive blood glucose 

level), which is harmful to many organs, especially liver and the eyes. Early or high insulin 

admission may end up in a hypoglycemic state (insufficient blood glucose level), which 

may lead to impaired brain function, unconsciousness, and even death (Herdem and 

Yasarcan, 2010). 

 

Managing the fullness level at the dinner table is also a stock management problem. 

There is a desired level of fullness; the states of being hungry and being overfilled are 

unwanted. Eating is the inflow to the fullness level and the outflow is the digestion. The 

fullness level is not perceived instantaneously as soon as a bite is swallowed. There is a 
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time difference between eating and the perception of its contribution to the fullness level. 

Due to this delay, one could carry on eating, although the currently taken food would 

suffice. This would cause an overshoot of the ideal fullness level, which may create 

discomfort. 

 

As mentioned in the previous paragraphs, there usually is a time difference between 

a control action and its effect on the main stock. The total amount of control actions yet to 

affect the main stock is called “supply line”. In the inventory management example given 

earlier, the supply line would be the goods in transit and the supply line delay would be the 

in transit time. In a workforce management system, the main stock would be the workforce 

level, the supply line would be the new recruits undergoing their training period, and the 

supply line delay time would be the duration of the training. In a production system, the 

main stock would be the finished goods inventory, the supply line would be the work-in-

process inventory, and the supply line delay time would be the duration of the production 

process. There are many factors that should be considered in the decision making process 

such as the level of the main stock and the expected rate of the outflow. The level of the 

supply line should also be considered in the decisions. Otherwise, depending on the values 

of the decision making parameters, the main stock would either show an unwanted 

oscillatory behavior or a poor response (i.e. the gap between the main stock and its ideal 

level would reduce undesirably slowly). In system dynamics, mainly, there are three types 

of delay structures. The supply line examples given in this paragraph are all in the form of 

a material supply line delay. Stock management in the presence of such a delay structure is 

well-studied and there exists dynamic decision making heuristics that can prevent the 

unwanted behaviors mentioned before (Sterman, 1989; Sterman, 2000, Chapter 17; 

Yasarcan, 2003, Chapter 5; Yasarcan, 2011). 
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The figure below is the stock-flow diagram of the generic stock management 

structure with a first order supply line delay. 

 

Stock
Supply  Line

Acquisition Flow

Desired Stock

Stock

Adjustment

Control Flow Loss Flow

Supply  Line

Adjustment
Desired

Supply  Line

Acquisition

Delay  Time

Weight of

Supply  Line

Stock

Adjustment Time

 

Figure 2.1.  Stock management model with first order supply line. 

 

The stock equations of this model are as follows: 

 

   DTAFCFSLSL tttDTt 
 (2.1) 

 DTLF
ADT

SL
SS t

t
tDTt 








  (2.2) 

 

The equations of the flows and the rest of the variables are given below: 

 

 SLASALFCF   (2.3) 

 

The control flow Equation 2.3 given above is called the anchor-and-adjust heuristic, 

which is widely used in stock management. 

 

 
SAT

SS
SA

* 
  (2.4) 
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SAT

SLSL
wSLA

*

SL


  (2.5) 

 
ADT

SL
AF   (2.6) 

 0LF  (2.7) 

 0*S  (2.8) 

 0 ADTLFSL*  (2.9) 

 

Desired Stock and Loss Flow are taken to be zero, not only for the sake of simplicity 

but also for the similarity of the model to the soft landing model presented in this thesis. In 

an effort to obtain a second order differential equation for the stock-management model, 

we first obtained Equations 2.12 and 2.13 from Equations 2.1-2.2 and 2.10-2.11. 

 

 
DT

SS
S tDTt

DT


 

0
lim  (2.10) 

 
DT

SLSL
SL tDTt

DT


 





0
lim  (2.11) 

 LF
ADT

SL
S   (2.12) 

 AFCFSL 


 (2.13) 

 

Later, we inserted Equations 2.3-2.9 into Equations 2.12-2.13 and simplified as 

shown below: 

 

 
ADT

SL
S   (2.14) 

 
ADT

SL

SAT

SSLw
AFLFSLASASL SL 






 (2.15) 

 

Finally, we transformed two first order differential equations (2.14-2.15) into a 

second order differential equation (Equation 2.19) as shown below.  
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ADT

SL
S



  (2.16) 

 ADTSSL 


  (2.17) 

 S
SAT

SADTSw
ADTS SL 


 


  (2.18) 

 0
1

1 







 S

SAT
S

SAT

ADT
wSADT SL

  (2.19) 

 

Equation 2.19 is used in Chapter 8 in developing the new heuristic proposed in this 

thesis. 
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3.  THE SOFT LANDING MODEL 

In this study, we first constructed a stock-flow model of the soft landing problem, 

which is given in Figure 3.1. This diagram represents only the physical structure of the soft 

landing problem; it does not represent the controller (e.g. a human decision maker, a 

computer). Height (i.e. the vertical distance between the spacecraft and landing surface) 

and Velocity (i.e. the vertical velocity) are the two stock variables (accumulations, system 

state variables) in the model, which are represented as boxes (see Figure 3.1). The stock 

Equations 3.2 and 3.4 are approximate integral equations. DT (simulation time step) in 

these equations is set to 2
-9 

(1/512) seconds, which is sufficiently small in emulating 

continuous time behavior. Velocity, which is a stock variable, is at the same time the one 

and only flow of Height. Velocity has a single flow too; Acceleration. In our model 

diagram (Figure 3.1) there are only two flows, which are represented by thick arrows with 

a valve in the middle. Flows, in general, define the rate that stocks change. Hence, Height 

is controlled via Velocity, Velocity via Acceleration (Equations 3.2 and 3.4). We select the 

initial conditions for the spacecraft so as to observe important dynamics that the model can 

generate (Equations 3.1 and 3.3). For example, if Height was set to a very low initial value, 

it would not be possible to observe how the vehicle behaves before it enters the very final 

stage of landing. 

 

 
 mHeight 10000   (3.1) 

  mDTVelocityHeightHeight ttDTt   (3.2) 

  smVelocity /100   (3.3) 

  smDTonAcceleratiVelocityVelocity tDTt /  (3.4) 
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Figure 3.1.  Stock-flow diagram of the model. 

 

The thin arrows in Figure 3.1 represent causal functional relations that define the 

non-stock variables. Accordingly, Net Force and Mass determine Acceleration (Equation 

3.5). In our model, Mass is a constant because we ignore the change in the mass due to fuel 

consumption (Equation 3.6). By doing so, we keep the model fairly simple to avoid an 

extra load of information that would complicate the essential understanding of the structure 

of the model. In Chapter 9, this assumption is relaxed in order to observe possible changes 

in the dynamics caused by a variable mass. 

 

  2// smMassNet ForceonAccelerati   (3.5) 

  kgMass 1000  (3.6) 

  NrceControl ForceDamping Fonal ForceGravitatioNet Force   (3.7) 
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Height is controlled via Velocity (Equation 3.2), Velocity via Acceleration (Equation 

3.4), Acceleration via Net Force (Equation 3.5), and Net Force via Control Force 

(Equation 3.7)
2
. The control feedback loop structure also includes the controller, which 

determines Control Force via Desired Control Force. The natural inputs to the controller 

are Height and Velocity. A simplified causal loop diagram showing these relations and two 

negative (counteracting) feedback loops within the control feedback loop structure can be 

seen in Figure 3.2. Although, every control system involves delays in 

measuring/perceiving actual conditions (Yasarcan, 2011), we ignore such delays in our 

model for the sake of simplicity and assumed that the controller has instantaneous access to 

the current values of Height and Velocity. We also ignore delays caused by actuators. 

Explicitly modeling delays caused by actuators and measurement processes increases the 

model complexity (Atay, 2009; Barlas, 2002; Forrester, 1961; Forrester, 1971; Michiels 

and Niculescu, 2007; Sterman, 2000; Yasarcan, 2011; Yasarcan and Barlas, 2005). 

 

CONTROLLER

Height

Velocity

Acceleration

Net Force

Control Force

Desired Control

Force

+ +

+

+

-

+

-

-

-

 

Figure 3.2.  Causal-loop diagram of the control feedback loop structure. 

 

 

Positive Height, Velocity, Acceleration, and force directions are upward from the 

surface. Height equals zero means that the vehicle touches the ground, but the springs of 

                                                 

2
 One Newton amounts to the force needed to increase the velocity of a one kilogram body of mass by one 

meter per second in one second ( N = kg ∙ m / s
2
 ). 
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the landing gear are at rest, so they bear no force at Height equals zero. Thus, when the 

vehicle comes to a static equilibrium, the springs of the landing gear get compressed 

balancing the weight (Gravitational Force) of the vehicle and Height becomes slightly less 

than zero. See the assumption regarding the Suspension Spring Coefficient at the end of 

this chapter. 

 

Gravitational Force, Damping Force, and Control Force add up to the Net Force 

acting on the vehicle (Equation 3.7). Gravitational Force acts on the vehicle due to mass 

and gravity (Equation 3.8). Gravitational Acceleration is assumed to be constant during 

landing; in the model, it does not change with the distance to the surface (Equation 3.9). 

Corollary to constant Mass (Equation 3.6) and constant Gravitational Acceleration 

(Equation 3.9), Gravitational Force is also a constant (Equation 3.8). 

 

  NonAcceleratinalGravitatioMassnal ForceGravitatio   (3.8) 

  2878 sm.onAcceleratinalGravitatio   (3.9) 

 

The gravitational acceleration of the celestial body to be landed on is assumed to be 

equal to the surface gravitational acceleration of Venus that is –8.87 m/s
2
 (Equation 3.9). 

Note that the assumed landing conditions other than the gravitational acceleration do not 

resemble the conditions of Venus at all. Venus has a thick atmosphere, but we aimed to 

capture the difficulty caused by the absence of drag. Hence, we assumed zero drag force. 

 

The landing gear of the spacecraft is comprised of dampers and springs. Damping 

Force, which is a result of the compression of the landing gear, is generated after the 

spacecraft contacts the landing surface (Equation 3.10). To be able to correctly represent 

the conditional existence of Damping Force, we also defined a variable named Spring 

Compression, which represents the amount of compression of the landing gear (Equation 

3.11). Inclusion of Spring Compression is in accordance with our aim of obtaining a 

transparent model. Suspension Spring Coefficient, Suspension Damper Coefficient, and 

Mass determine the damping behavior, which can be subcritical, critical, or supercritical. 

The values of the two coefficients are selected such that a critically damped behavior is 

obtained after the touchdown (i.e. after the touchdown, Height asymptotically approaches 

to its equilibrium value). 
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otherwise, 

00,

 (3.10) 

 

  m
Height

Height
pressionSpring Com 














otherwise,

0,0
 (3.11) 

 

Desired Control Force determined by the controller, which is explained in Chapter 4, 

is an input to Control Force of the reverse force thruster. Control Force cannot be more 

than the maximum force applicable by the thruster (Equations 3.12 and 3.13). 

 

 N
Max Force

Max Forceentrol ForcDesired CorceControl FoDesired

ForceControl







 



otherwise,

,  (3.12) 

  N,Max Force 00030  (3.13) 

3.1.  Selection of Landing Gear Parameters 

Due to the final velocity at the instant of touchdown, the landing gear must bear 

some force. Depending on the amount of the final (landing) velocity, the selection of 

Suspension Damping Ratio (SDR) affects the force that the landing gear must bear. With 

higher SDR values, the amount of the force, when the landing velocity approaches to zero, 

decreases. However, with realistic landing velocities other than zero, a high SDR value 

causes a quick increase in the force that the landing gear must bear. It is possible to 

optimize SDR, given a landing velocity. For a comparison of optimum SDR values for 

given landing velocities see Table 3.1. We determined the desired final velocity as –2 m/s 

and selected –10 m/s as the boundary value between a hard landing and a crash. We used 

the optimum SDR value for –10 m/s to be able to account for a possible deviation from the 

desired velocity value. Choosing the optimum SDR value for –2 m/s would increase the 
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maximum force applied on the landing gear at a final velocity of –10 m/s by about 40% as 

compared to SDR’s optimum value at this velocity, 0.3328. Thus, to be on the safe side, 

SDR is chosen as 0.3328 to minimize the force for the final velocity of –10 m/s. For 

comparison see Figure 3.3. 

 

Table 3.1.  Comparison of sample landing velocities and corresponding SDR values 

minimizing maximum force subjected to the landing gear. 

Landing 

Velocity (m/s) 

Optimum 

SDR value 

-10 0.3328 

-5 0.4070 

-2 0.6644 

 

  unitless33280.atio Damping RSuspension   (3.14) 

  m50.nCompressioRestGearLanding   (3.15) 

  m/N,efficient Spring CoSuspension 74017  (3.16) 

 






 


m

sN
,tCoefficienDamperSuspension 8032  (3.17) 

 

Landing Gear Rest Compression is the amount of the compression in the springs 

caused solely by the weight of the spacecraft on the target celestial body. Together with 

Gravitational Force and Mass, it determines the value of Suspension Spring Coefficient 

and Suspension Damper Coefficient. 

 

  mN
nCompressioRestGearLanding

nal ForceGravitatio
fficientSpring CoeSuspension /  (3.18) 
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Figure 3.3.  Maximum Landing Force variation with different Landing Velocity values 

displayed on five Suspension Damping Ratio Values. 

3.2.  Simplifying Model Assumptions 

The summary of the simplifying model assumptions are given below: 

 

 The movement of the spacecraft in the horizontal axes is not modeled. Spacecraft is 

assumed to move only vertically. 

 There is no atmosphere in the landing area, thus no air friction exists that would 

cause a drag force on the vehicle (Equation 3.7). 

 Gravitational Acceleration is assumed to be constant during landing; it does not 

change with the distance to the surface (Equation 3.9). 

 Mass is a constant, the change in the mass due to fuel consumption is ignored 

(Equation 3.6). 

 The landing gear has fixed specifications; Suspension Spring Coefficient and 

Suspension Damper Coefficient are both constants. 

 Suspension Spring Coefficient is selected so that the equilibrium value for Spring 
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Compression is 0.5 meters (i.e. the equilibrium value for Height is –0.5 meters). 

 Suspension Damper Coefficient is selected so as to minimize Maximum Landing 

Force for Landing Velocity of –10 m/s. The selected value is less than one, which 

creates underdamped behavior (i.e. after the touchdown, the vehicle shows slight 

damping oscillations around its equilibrium height value). 

 There are no delays caused by actuators; Desired Control Force generated by the 

controller affects Control Force without a time lag (Equation 3.12). 

 Information flow from the system to the controller is perfect and instantaneous; there 

are no errors or delays caused by measurement processes. 

 

3.3.  Performance Measures 

Performance measure equations are used to evaluate the landing. Landing Time gives 

the duration of the landing beginning with the initial conditions until the moment of 

touchdown (Equations 3.20-3.21). Landing Velocity is the velocity value at the moment of 

touchdown (Equations 3.22-3.23). Max Landing Force reports the maximum force that is 

generated by the landing gear after touchdown (Equations 3.24-3.25). Force Ratio gives a 

scale of Maximum Landing Force comparing it to Gravitational Force (Equation 3.26). 

Note that at static equilibrium the landing gear withstands Gravitational Force. Max 

Acceleration gives the maximum acceleration of the vehicle during landing (Equations 

3.27-3.28). Number of Sign Change in Force counts the directional change of force and 

consequently also acceleration (Equations 3.29-3.30). 

 

  sTimeLanding 00   (3.20) 

  s
Height,TimeLandingt

TimeLandingTimeLanding
tt

tDTt







 


otherwise,0 

 00,
(3.21) 

  s/mVelocityLanding 00   (3.22) 

 

 s/m
Height,VelocityLandingVelocity

Velocity

Landing

Velocity

Landing

ttt

t

DTt



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

 





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







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





otherwise,0 

 00,
 (3.23) 

  NForceLandingMax 00   (3.24) 
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  unitless00 LandinguntilForceinChangeSignofNumber  (3.29) 
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  NForceNetinChangeousInstantaneMax 00   (3.33) 
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4.  A MASS-SPRING-DAMPER BASED CONTROL HEURISTIC 

 

The stock-flow model given in Figure 3.1 represents only the physical structure of 

the soft landing problem. In this chapter, a mass-spring-damper based (MSD) heuristic is 

assumed to be used by the controller in producing the values for Desired Control Force. In 

essence, this heuristic is a PD (proportional-derivative) controller. The simulated behavior 

generated by the model and the heuristic is discussed in the next chapter. The aim of this 

chapter is to present the formulations of this heuristic. 

 

Yasarcan and Barlas (2005) use a procedure in developing control heuristics for 

control problems involving information delay or indirect control via a secondary-stock. 

This procedure adapts a well known successful heuristic for control problems involving 

material supply line delay, using the similarity of the differential equations of control 

problems involving different types of delay structures. The model presented in Chapter 3 

can be reduced to a second order linear differential equation because it contains two stock 

variables, which are defined by approximate integral equations (Equation 3.2 and Equation 

3.4). The mass-spring-damper model is well studied and it is known how to obtain a 

certain behavior by adjusting the model parameter values. Furthermore, it can also be 

represented by a second order linear differential equation. The heuristic is developed based 

on the similarity of the differential equations of the mass-spring-damper model and the 

model presented in the previous chapter
3
. 

 

 

Figure 4.1.  Mass-spring-damper schematic. 

 

                                                 

3
 The authors of this paper acknowledge that it is Dr. I. Emre Köse who suggested to us to use the mass 

spring damper model for this purpose. 



 

 

22 

 

The schematic given in Figure 4.1 is a well known one. The differential equation of a 

non-driven (i.e. Fexternal = 0) mass-spring-damper model with mass m, spring constant k, 

and damper coefficient c is given below: 

 

 0 xkxcxm   (4.1) 

 

In Equation 4.1, x represents displacement, x  represents velocity, and x  represents 

acceleration. This equation can be described by using stock-flow concepts, x  and x  being 

the stocks and their associated flows being x  and x  respectively. Note that x  is a flow 

and a stock at the same time. As a further clarification, xk   is the spring force ( springF ) 

and xc   is the damper force ( damperF ). The net force applied on the body of mass is the 

sum of these two forces ( xkxcFFF springdampernet   ). According to Newton’s 

second law of motion mass times acceleration is equal the net force acting on the body 

( xmFnet
 ). Therefore, mass times acceleration is equal to the sum of the spring force 

and damper force. Hence, Equation 4.1 is obtained. 

 

The damping ratio of the mass-spring-damper model is: 

 

 
km

c
RatioDamping




2
 (4.2) 

 

The dynamics of the mass-spring-damper model can be underdamped, overdamped, 

or critically damped depending on the value of Damping Ratio. For Damping Ratio values 

under 1, the dynamic behavior is underdamped and for values over 1, it is overdamped. 

The case where Damping Ratio is exactly 1 is called critically damped. When the dynamic 

behavior is underdamped, the spring dominates the movement and the body of mass 

oscillates. In the critically damped case, the body asymptotically approaches the rest 

condition without an overshoot. In the overdamped case, the damper dominates the 

dynamics and the body approaches the rest condition slower compared to the critically 

damped case (Åström and Murray, 2008). As a summary, the importance of Damping 

Ratio is that determining its value determines the dynamics of the mass-spring-damper 

model. 
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The suggested control heuristic is adapted from the mass-spring-damper model that 

is defined by Equation 4.1. Height, Velocity, Acceleration, and Mass in our model 

corresponds to x , x , x , and m  in Equation 4.1, respectively. In the heuristic, we named 

k  as Height Coefficient and c  as Velocity Coefficient. Thus, Equation 4.1 becomes: 
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Height
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Velocity
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Utilizing Newton’s second law of motion, the following can be written: 

 

  NHeight
tCoefficien

Height
Velocity

tCoefficien

Velocity
ForceNetDesired 




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











  (4.4) 

 

The reverse force thruster should also counteract Gravitational Force. Hence, 

Desired Control Force, which is the output of the heuristic and an input to Control Force 

(see Equation 3.12 and Figure 3.1), can be given as: 

 

  NForcenalGravitatioForceNetDesiredForceControlDesired   (4.5) 

  mNtCoefficienHeight /10  (4.6) 

  msNtCoefficienVelocity /200   (4.7) 

 

The parameters of the adapted heuristic, Height Coefficient and Velocity Coefficient 

values are set to 10  mN /  and 200  msN / , respectively. Consequently, the damping 

ratio for our model becomes: 

 

 1
 1010002
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fficientHeight CoeMass

oefficientVelocity C
RatioDamping  (4.8) 

 

The value of Damping Ratio means that the suggested control heuristic produces a 

critically damped behavior for the height of the spacecraft. If Damping Ratio was less than 

1, this would imply a possible overshoot (Height < 0). This is equivalent to saying that the 



 

 

24 

 

vehicle can continue its normal motion below the ground level, which is not possible. 

Therefore, in the soft landing model, if Damping Ratio is less than 1, a crash may occur. 

On the other hand, a slower approach would also be undesired. Therefore, the heuristic 

parameters are selected so that Damping Ratio becomes 1. For the simulated dynamics of 

the soft landing model with the proposed heuristic, see Section 4.3. 

4.1.  Selection of the Controller Parameters 

Decreasing Damping Ratio shortens the landing duration and increases the final 

velocity (See Figure 4.2). Long landing durations and also great final velocity values 

should be avoided. Therefore, a Damping Ratio value with a reasonable landing duration 

and final (landing) velocity should be selected. The final velocity should be less than –10 

m/s to be able to obtain a safe landing, so Damping Ratio should minimally be 0.8. 

Damping Ratio value 1 has a special mathematical significance; it is the minimal value that 

makes the vehicle asymptotically
4
 seek the ground level and is not affected by the initial 

conditions. Due to this mathematical property, Damping Ratio is taken as 1.  

                                                 

4
 To be mathematically correct, asymptotical seek of the goal takes indefinite time. This issue will be 

addressed in the next sub-section. 
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Figure 4.2.  Landing Time and Absolute Landing Velocity variation with different Control 

Force Damping Ratios. 

4.2.  Adjustments to the Mass-Spring-Damper Based Heuristic 

As mentioned in the previous section, there is a problem with the asymptotical 

approach of the heuristic with Damping Ratio = 1. The vehicle continues to hover on the 

ground, a very small distance away from the surface. Additionally, the heuristic should 

stop controlling after the first touchdown. 

 

We used an adjusted version of Equation 4.5 so that upon touching the ground, the 

thruster is off and is not switched on again. Equation 4.4 implicitly assumes that the 

heuristic seeks Velocity = 0. We also changed this assumption by defining a constant 

named Desired Final Velocity. These assumptions lead to the following equations: 
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 (4.9) 

  s/m.VelocityFinalDesired 21  (4.10) 

 

The existence of a negative Desired Final Velocity means that the vehicle 

asymptotically seeks the ground level with a velocity, so the problem of the infinite 

duration due to the asymptotical seek is avoided. 

 

Landing State is an important structure within the model, which is included in some 

performance measures’ evaluation (Equations 4.11-4.12). It also serves the purpose of 

preventing the heuristics from trying to control the vehicle after the landing has occurred 

(Equation 4.13). 

 

  unitless00 StateLanding  (4.11) 

 
 unitless

otherwise,0

00,1













 




tt

t

DTt

HeightStateLanding,
StateLanding

StateLanding

 (4.12) 

  N

StateLanding

StateLanding
Force

nalGravitatio

ForceNet

Desired

Force

Control

Desired





















































1,0 

 0,
 (4.13) 

4.3.  Dynamic Behavior of Landing 

As described previously, Height is controlled via Velocity (Equation 3.2), Velocity 

via Acceleration (Equation 3.4), Acceleration via Net Force (Equation 3.5), and Net Force 

via Control Force (Equation 3.7). The control feedback loop structure also includes the 

controller, which determines Control Force applied by the reverse force thruster via 

Desired Control Force (Figure 3.2). In order to obtain a reasonable value for Desired 

Control Force, the controller should consider the system state variables (i.e. Height and 

Velocity). Only by doing so is it possible to reach the aim of landing the spacecraft as 
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gently and as fast as possible. Recall that we intentionally left out many real life 

complexities in order to keep the model simple. Even under simplifying assumptions, the 

control task still is not a straightforward one. Despite the fact that one of our simplifying 

assumptions is that the values of the state variables Height and Velocity are 

measured/perceived instantaneously and without error, it is necessary to develop a proper 

control heuristic
5
. The main reason for the difficulty is that the control task requires 

simultaneous control of Height and Velocity, which -due to the physical structure of the 

problem- can only be indirectly affected by the reverse force thruster; Height and Velocity 

have inertia; their values do not change instantaneously (see Figures 1.1 and 3.1 and 

Equations 3.1-3.7). The addition of delays caused by actuators to the model would further 

complicate the control task by amplifying the effect of the modeled inertia
6
. 

 

The stock-flow model given in Figure 3.1 and defined by Equations 3.1-3.13 

describes the structure of the soft landing problem excluding the controller. The 

formulations of the heuristic suggested for the controller is explained in Chapter 4. The 

dynamic behavior presented in Figures 4.3-4.7 is generated by simulating the model 

including the controller with the proposed heuristic for 60 seconds (Equations 3.1-3.13 and 

Equations 4.4-4.5). 

 

The dynamic behavior of Height is given in Figure 4.3. Initially, the change in 

Height (i.e. Velocity) is relatively fast and, as the spacecraft approaches to the surface, the 

change in Height slows down. This behavior is comparable to the landing behavior of 

Apollo 15 (see Figure 1.2). Hence, one can conclude that the behavior obtained by the 

control heuristic is a reasonable one; by a fast initial decline, the heuristic tries to decrease 

the time to land; by a slow final approach, it keeps the impact force well below harmful 

values. At the instant of touchdown, the value of Velocity is –2.04 meters per second (–

7.35 km/h) creating a maximum impact force of circa 14,782 Newton, approximately 1.67 

times the weight of the spacecraft on the target celestial body (8,870 Newton). The weight 

corresponds to the model variable Gravitational Force, which is the force that the landing 

                                                 

5
 For example, see Yasarcan (2011) for the significance of and difficulties introduced by measurement or 

perception delays. 
6
 For example, see Yasarcan and Barlas (2005) for different types of delays between Desired Control Force 

and Control Force (i.e. delay between “control flow” and “acquisition flow”, and delay between “desired 

control flow” and “control flow”), and the effects of these delays. 
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gear must bear when the spacecraft is standing still on the ground. The discussion on the 

strength design of the spacecraft is beyond the scope of this study. 
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Figure 4.3.  Dynamic behavior of Height. 

 

The dynamic behavior of Velocity and Net Force acting on the vehicle during landing 

are given in Figures 4.4 and 4.5, which further explain the dynamic behavior obtained by 

the control heuristic. At first, the heuristic allows the spacecraft to accelerate in the 

negative direction towards the landing surface (see Figure 4.4, approximately within the 

time range of 0-10 seconds) by keeping Net Force negative (i.e. Control Force less than 

Gravitational Force, see Figures 4.5 and 4.6). Aiming to decrease the duration of landing, 

Velocity continues to increase during this initial period. After this initial phase, Velocity 

decreases until the vehicle touches the surface (see Figure 4.4, approximately within the 

time range of 10-55 seconds). In this later phase, the heuristic produces more Control 

Force than Gravitational Force (Figure 4.5) resulting in a positive Net Force (Figure 4.6). 

At the moment of landing, Control Force is turned off and Damping Force, which is zero 

throughout the simulation up to this point, takes over and stops the vehicle (see Figures 4.5 

and 4.6, approximately around 55 seconds). 
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Figure 4.4.  Dynamic behavior of Velocity. 
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Figure 4.5.  Net force acting on the vehicle during landing. 
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Figure 4.6.  Absolute values of the forces acting on the vehicle during landing. 
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Figure 4.7. Dynamic behavior of Spring Compression during the final process of landing 

(between seconds 55-60). 
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5.  BANG-BANG CONTROL HEURISTIC 

The bang-bang principle relies on the fact that a system can be controlled in minimal 

time properly using all available power throughout the whole control. A bang-bang system 

is defined as a system that utilizes maximum power for control at all times. Additionally, 

for systems with one degree of freedom there is an optimal one. This optimal one, if it 

exists, is also the best of all possible systems in terms of minimal time (LaSalle, 1959). 

 

A bang-bang control type heuristic was developed for our model. The purpose is to 

let the vehicle descend up to a certain Height with only the effect of Gravitational Force in 

an accelerating fashion, and then apply the maximum possible force until touchdown. Note 

that; in our model, Control Force is in the positive Height direction and Gravitational 

Force is the only force in the negative direction that can pull the vehicle to the ground. 
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  s/mVelocityFinalDesired 2  (5.2) 
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It is possible to determine the critical point after which the application of the 

maximum force can decelerate the vehicle to the desired approach velocity. Up to this 

critical point the vehicle accelerates as much as possible with the Gravitational Force 

acting on the vehicle. Based on the work-energy principle, equating kinetic energy at the 

critical point to the kinetic energy at the final moment and the work done on the vehicle 

after the critical point, this point can be determined (see Equations 5.4 and 5.5). 
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  Jxamvmvm cfc  max

22

2

1

2

1
 (5.4) 

  22

max

22
/2 smxavv cfc   (5.5) 

 

When the critical distance is reached, Desired Net Force becomes Max Force; 

decelerating the vehicle until touchdown (see also Equations 4.4, 3.12-3.13, 5.1-5.3). 

Furthermore; with the determined initial condition, it is also possible to calculate the point, 

as of which Max Force application is necessary (See Appendix A). Note that, the modified 

Desired Control Force equation 4.13 and Landing State Equations 4.11-4.12 are also valid 

in the bang-bang heuristic. 

 

The dynamic behavior of Height is given in Figure 5.1. Initially, the change in 

Height (i.e. Velocity) is relatively fast and, as the spacecraft approaches to the surface, the 

change in Height slows down. At the instant of touchdown, the value of Velocity is –3.28 

meters per second (–11.81 km/h) creating a maximum impact force of circa 17,869 

Newton, approximately 2.01 times the weight of the spacecraft on the target celestial body 

(8,870 Newton). Note that, Landing Velocity value –3.28 m/s obtained by the bang-bang 

heuristic is due to a numerical error by the Euler Method used in the simulation. Ideally, 

when time step is infinitesimally small, Landing Velocity would approach Desired Final 

Velocity value of –2 m/s. 
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Figure 5.1.  Dynamic behavior of Height in the bang-bang heuristic. 
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The dynamic behavior of Velocity and Net Force acting on the vehicle during landing 

are given in Figures 5.2 and 5.3, which further explain the dynamic behavior obtained by 

the control heuristic. At first, the heuristic allows the spacecraft to accelerate with the 

effect of Gravitational Acceleration in the negative direction towards the landing surface 

(see Figure 5.2, approximately within the time range of 0-12 seconds) by keeping Net 

Force equal to Gravitational Force (see Figures 5.3 and 5.4). Aiming to decrease the 

duration of landing, Velocity continues to increase during this initial period. After this 

initial phase, Velocity decreases until the vehicle touches the surface (see Figure 5.2, 

approximately within the time range of 12-17 seconds). In this later phase, the heuristic 

produces Control Force equal to Max Force (Figure 5.3) resulting in a positive Net Force 

(Figure 5.4). At the moment of landing, Control Force is turned off and Damping Force, 

which is zero throughout the simulation up to this point, takes over and stops the vehicle 

(see Figures 5.3 and 5.4, approximately around 17 seconds). 
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Figure 5.2.  Dynamic behavior of Velocity. 
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Figure 5.3.  Net force acting on the vehicle during landing. 
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Figure 5.4.  Absolute values of the forces acting on the vehicle during landing. 
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6.  A NEW HEURISTIC 

In this chapter, we have developed a new heuristic, combining the previously 

discussed mass-spring-damper (MSD) and bang-bang heuristics and, additionally, it 

includes the concept “weight of supply line” borrowed from stock management discussed 

in Chapter 2. 

 

The two-stock soft landing model (Figure 3.1) incorporating the mass-spring-damper 

heuristic (given in Chapter 4), excluding nonlinearities caused by Max Force limitation 

and touchdown processes, is similar to a second order stock management model (given in 

Chapter 2); they can both be reduced to a second order linear differential equation. 

Remembering Equation 2.19 from the generic stock management structure when anchor-

and-adjust heuristic is used in control and Equation 4.3 of the soft landing model when 

mass-spring-damper heuristic is used in control: 
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We can match the variables of Equations 2.19 and 4.3:  

 

 ADTMass   (6.1) 

 
SAT
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  (6.2) 

 
SAT

ADT
wtCoefficienVelocity SL 1  (6.3) 

 

Implementing the coefficients of the generic stock management structure, the 

equation for the new heuristic becomes:  
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The difference between mass-spring-damper heuristic and the anchor-and-adjust 

heuristic lies in the calculation of Velocity Coefficient. Mass-spring-damper heuristic 

determines the coefficients by setting Damping Ratio to 1, so that critically damped 

behavior is obtained. In stock management, however, Weight of Supply Line of the anchor-

and-adjust heuristic is usually set to 1 in order to guarantee non-oscillatory behavior 

(Sterman, 1989; Yasarcan, 2011; Yasarcan and Barlas, 2005). Note that, this rule ensures 

that the obtained behavior is not underdamped as shown by equation 6.6. 

 

Damping Ratio, which is given by Equation 4.2, can also be expressed as given 

below using the equivalency Equations 6.1-6.3: 
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If Weight of Supply Line = 1, Equation 6.5 becomes: 
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In the new heuristic, we use the following equation for Velocity Coefficient, which is 

obtained by using the equivalency Equations 6.1 and 6.2 and setting Weight of Supply 

Line = 1 in Equation 6.3: 

 

 tCoefficienHeightMasstCoefficienVelocity 1  (6.7) 

 

Remember that, in mass-spring-damper heuristic, the selection of Height Coefficient 

as 10 and Damping Ratio as 1 (critical damping) equates Velocity Coefficient to 200 as 

previously given in Chapter 4. In the new heuristic, the selection of Height Coefficient as 

10 and Weight of Supply Line as 1, gives Velocity Coefficient of 10,001. The mass-spring-
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damper based heuristic would necessitate extensive amount of landing time for this new 

value of Velocity Coefficient. In order to prevent this unwanted behavior, instead of using 

Desired Final Velocity (Equation 4.10) in the equation of Desired Net Force (Equation 

4.9), we define a new variable called Desired Velocity which is a dynamically calculated 

variable (i.e. the value of Desired Velocity is calculated for each Height value). We derive 

the formulation for Desired Velocity (Equation 6.8) from Equation 5.5, on which the bang-

bang heuristic (Equation 5.1) relies, as well. Thus, in this way, we combine the two 

heuristics. 
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Similar to the adjusted Desired Net Force equation of the mass-spring-damper 

heuristic (Equation 4.9), the Desired Net Force equation for the new heuristic becomes: 
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 (6.9) 

  NForcenalGravitatioForceNetDesiredForceControlDesired   (6.10) 

 

Behavior Smoothing Factor determines the fraction of the Positive Available Net 

Force to be used in the calculation of Desired Velocity (Equation 6.8). Note that, Behavior 

Smoothing Factor = 0 would not allow proper control and would set the Desired Velocity 

equal to Desired Final Velocity at all Height values, whereas Behavior Smoothing Factor = 

1 would make the new heuristic approach the bang-bang heuristic. 

 

  NForcenalGravitatioForceMaxForceNetAvailablePositive   (6.11) 

  unitless250.FactorSmoothingBehavior   (6.12) 

  s/m.VelocityFinalDesired 50  (6.13) 
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This heuristic achieves landing in 22.55 seconds with Landing Velocity –1.99 m/s. 

The dynamic behavior of the landing achieved by the new heuristic is given in figures 

below. 
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Figure 6.1.  Dynamic behavior of Height. 
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Figure 6.2.  Dynamic behavior of Velocity. 
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Figure 6.3.  Net force acting on the vehicle during landing. 
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Figure 6.4.  Absolute values of the forces acting on the vehicle during landing. 
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7.  TERMINAL GUIDANCE HEURISTIC FOR VERTICAL 

MOVEMENT 

In this chapter, a non-linear heuristic was adapted for the control of the vehicle 

during descent. The non-linear heuristic was simplified from Kriegsman and Reiss (1962). 

 

The remaining time required to reach the surface at any point during landing can be 

roughly approximated as Height/Velocity. Although this approximation disregards the 

value of Acceleration, approaching the surface the term Height/Velocity converges to the 

real value of the remaining time. 

 

Using the difference between Velocity and Desired Final Velocity and the remaining 

time, formulated as Height/Velocity, Command Acceleration can be calculated as:  

 

  2s/m
Height

Velocity

VelocityFinal

Desired
VelocityonAcceleratiCommand 





















  (7.1) 

 

From the above equation, we can write the following for the Desired Control Force: 

 

 
 

 N
Height

MassVelocityVelocityFinalDesiredVelocity

ForceControl

Desired 









 (7.2) 

 

  s/m.VelocityFinalDesired 81  (7.3) 

 

In the simulation runs, an adjusted version of Equation 7.2 is used. This form of the 

equation may result in the occurrence of a division-by-zero error in the final moments of 

the approach. For this purpose, the value of Height/Velocity is set to –0.01 for Height 

values smaller than 0.01. The modified equation becomes:  
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 

 
 N

Height
MassVelocityFinalDesiredVelocity

Height
Height

MassVelocityVelocityFinalDesiredVelocity

ForceControlDesired

































01.0,
01.0

01.0,
 (7.4) 

 

 

The dynamic behavior of Height is given in Figure 7.1. Initially, the change in 

Height (i.e. Velocity) is relatively fast and, as the spacecraft approaches to the surface, the 

change in Height slows down. At the instant of touchdown, the value of Velocity is –2.05 

meters per second (–7.38 km/h) creating a maximum impact force of circa 14,796 Newton, 

approximately 1.67 times the weight of the spacecraft on the target celestial body (8,870 

Newton).  
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Figure 7.1.  Dynamic behavior of Height in the terminal guidance heuristic. 

 

The dynamic behavior of Velocity and Net Force acting on the vehicle during landing 

are given in Figures 7.2 and 7.3, which further explain the dynamic behavior obtained by 

the control heuristic. At first, the heuristic allows the spacecraft to accelerate towards the 

landing surface (see Figure 7.2, approximately within the time range of 0-10 seconds) with 

the effect of Gravitational Acceleration by keeping Desired Control Force less than 

Gravitational Force (see Figures 7.3 and 7.4). Aiming to decrease the duration of landing, 

Velocity continues to increase during this initial period. After this initial phase, Velocity 
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decreases until the vehicle touches the surface (see Figure 7.2, approximately within the 

time range of 10-22 seconds). In this later phase, the heuristic produces Control Force 

greater than Gravitational Force (Figure 7.3) resulting in a positive Net Force (Figure 7.4). 

At the moment of landing, Control Force is turned off and Damping Force, which is zero 

throughout the simulation up to this point, takes over and stops the vehicle (see Figures 7.3 

and 7.4, approximately around 22 seconds). 
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Figure 7.2.  Dynamic behavior of Velocity. 
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Figure 7.3.  Net force acting on the vehicle during landing. 
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Figure 7.4.  Absolute values of the forces acting on the vehicle during landing. 
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8.  COMPARISON OF THE HEURISTICS AND THE SENSITIVITY 

OF THE HEURISTICS TO DEVIATIONS FROM THE MODEL 

ASSUMPTIONS 

The mass-spring-damper (MSD) heuristic, the bang-bang heuristic, the new heuristic, 

and the terminal guidance heuristic presented in the previous chapters have different 

characteristics. The differences between the four heuristics and the differences in the 

resulting behaviors are explained in this chapter. A summary of the comparison of the 

heuristics is given in Table 8.1. 

 

Table 8.1.  Comparison of the four heuristics. 

 MSD bang-bang new heuristic 
terminal 

guidance 

Landing Time 55.46 16.66 22.55 21.86 

Landing Velocity -2.04 -3.28
7
 -1.99 -2.05 

Max Landing Force 14782 17869 14677 14796 

Changes in Control Force smooth catastrophic smooth smooth 

Operating Range limited 

limited only in 

the presence of 

errors and delays 

limited only in 

the presence of 

errors and delays 

limited only in 

the presence of 

errors and delays 

Sensitivity to errors in parameters low high low low 

Sensitivity to variable readings low high medium medium 

Sensitivity to a relatively minor 

actuator delay time 
low very high high medium-high 

 

 

The qualitative comparison of the velocity Figures 4.4, 5.2, 6.2, and 7.2 gives a 

preliminary insight to the difference in the smoothness of the control. Furthermore, the 

comparison of the net force Figures 4.5, 5.3, 6.3, and 7.3 reveals that the bang-bang control 

heuristic makes a sudden jump in the force, the new heuristic and the terminal guidance 

heuristic show a quick increase in force, whereas the mass-spring damper heuristic changes 

force gradually. The performance measure equations for Max Instantaneous Change in 

                                                 

7
 The difference between the Desired Final Velocity and Landing Velocity obtained by the bang-bang 

heuristic is due to numerical errors caused by simulation. Landing Velocity would approach Desired 

Final Velocity if the simulation time step would be shorter. 
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Force (Equations 3.32 and 3.33) quantify momentary difference in force as 30,000 Newton 

in the bang-bang heuristic, 563.9 Newton in the terminal guidance heuristic, 278 Newton 

in the new heuristic and 3.4 Newton in the mass-spring-damper heuristic. In the mass-

spring-damper heuristic, the new heuristic and the terminal guidance heuristic, however, 

Max Instantaneous Change in Force is only existent due to the discrete nature of the 

simulation; it approaches zero as DT goes to zero. 

 

An additional difference, which is not directly observable from the graphical 

comparison, is that the bang-bang heuristic and the new heuristic have information about 

the vehicle, its Max Force per se. The bang-bang heuristic basically determines the point of 

force application and applies maximum force from that point on until the landing occurs. 

Where the mass-spring-damper heuristic and the terminal guidance heuristic may generate 

Desired Control Force values that are greater than Max Force; the bang-bang heuristic and 

the new heuristic would not do so, as they rely on Max Force to create the Control Force. 

Additionally, a general comparison of the heuristics’ force utilization during landing can 

be seen from Figure 8.1. The constant maximum force use of the bang-bang heuristic is 

easily observed from this graph. Another important observation is the flatness of the force 

profile of mass-spring-damper heuristic and that Net Force decreases towards the end of 

landing, whereas Net Force increases in both the new heuristic and the terminal guidance 

heuristic in the final moments before the landing. 
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Figure 8.1.  Net Force profiles generated by the heuristics. 
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Landing Velocity is another important criterion like Landing Time, and Equations 

3.22 and 3.23 are necessary for monitoring it. In our simulations with a time step of 2
-9

 

(1/512) seconds, the bang-bang heuristic, the mass-spring-damper heuristic, the new 

heuristic, and the terminal guidance heuristic landed with velocities of –3.28 m/s, –2.04 

m/s, –1.99 m/s, and –2.05 m/s; respectively. At this point, it is worth noting that the 

Landing Velocity of the bang-bang heuristic would decrease, if a shorter simulation time 

step is used. Therefore, the difference between the Landing Velocity of the bang-bang 

heuristic and the Landing Velocity values of the other heuristics is not an actual difference, 

it is a simulation error. 

 

A major drawback of the mass-spring-damper heuristic is that the landing behavior is 

affected by the selection of the initial conditions. Depending on the initial conditions and 

the value of Height Coefficient, the mass-spring-damper heuristic may require Control 

Force values far greater than Max Force. This may cause for the heuristic to let the vehicle 

accelerate towards the surface for too long, possibly causing a crash. This indicates a 

limited operating range with the set parameters of the heuristic. 

 

Looking at Table 8.1, another difference is the time the heuristics need to complete 

the landing. The performance measure equations for Landing Time (Equations 3.20 and 

3.21) aid this comparison. The bang-bang heuristic takes about 17 seconds to complete the 

landing with the given initial conditions; the terminal guidance heuristic completes the 

landing in about 22 seconds, the new heuristic takes about 23 seconds, and the mass-

spring-damper heuristic needs about 55 seconds. In fact, it is expected that the bang-bang 

heuristic is the minimum-time solution for a problem of this sort. Note that, decreasing the 

time to land and equivalently minimizing the fuel consumption are one of the main goals 

of the heuristics. Naturally, as the bang-bang heuristic is time-optimal, it performs better 

regarding these criteria. However, it should also be noted that, this optimality exists only 

when the exact knowledge of the variables and parameters is possible. In order to achieve 

this, all variables should be known without an error in magnitude and without a delay, all 

the parameters’ values should be exactly correct, and there should not be a time difference 

between the desired control force and the actual control force applied. Existence of any of 

the mentioned deviations would cause the optimal heuristic to deteriorate in behavior, 
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quickly and vastly. The comparison of the behaviors generated by the heuristics in the 

presence of such errors is given in the next sections. 

 

The duration of the landing in comparison to the bang-bang heuristic is slightly 

longer in the new heuristic and the terminal guidance heuristic. However, they are not as 

sensitive to the values of the parameters and variables and to minor actuator delays. 

Compared to the mass-spring-damper heuristic, they are not as robust to an error in 

parameter estimation, errors in variable readings, and the presence of an actuator delay. 

Nevertheless, they land the vehicle in significantly less time (see Table 8.1). 

 

8.1.  An Estimation Error in one of the Parameters 

To be able to compare the deterioration in the results, we assumed that the value of 

Mass used in the heuristics is wrongly estimated. Four different types of mass estimation 

errors are used to compare the behaviors of the heuristics. Two of these estimation errors 

are absolute errors and the other two estimation errors are relative errors. In absolute 

errors, the deviation from the real value of the parameter is constant, and in relative errors 

the error is a percentage of the real value of the parameter. In this case, as the value of the 

parameter is constant, the difference between the relative error and absolute error is 

insignificant. This categorization of errors will be qualitatively different in the next 

sections. Therefore, this differentiation is made in this section, as well. First, as absolute 

errors, Mass is estimated as 950 kg and 1050 kg instead of 1000 kg, which are addressed as 

–50 kg and +50 kg, respectively. Second, the relative errors are defined as –10% and 

+10%, which are equivalent to absolute errors of –100 kg and +100 kg, in this case. 

 

The dynamic behavior generated by the heuristics in the presence of the –50 kg error 

is given in Figures 8.2, 8.3, 8.4, and 8.5. The Landing Velocity values for the mass-spring-

damper, bang-bang, new heuristics and the terminal guidance heuristic deteriorate to –2.21 

m/s, –25.59 m/s, –2.11 m/s, and –2.12 m/s; and the corresponding Maximum Landing 

Force values are 15,146 N, 93,466 N, 14,938 N, and 14,951 N; respectively. These values 

suggest that, in the case of a parameter estimation error, a great deterioration in the bang-
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bang heuristic occurs, whereas the rest of the heuristics succeed in making a reasonable 

landing. 

 

A summary with the important performance criteria of the landing is given in Table 

8.2. An underestimation of Mass shortens Landing Time and causes an increase in Landing 

Velocity. The change in Landing Velocity in the bang-bang heuristic is significant and 

causes a crash, as expected. An overestimation of Mass lengthens Landing Time and 

reduces Landing Velocity, in the bang-bang heuristic as well. The other heuristics manage 

to tolerate these estimation errors. 

 

Table 8.2.  Comparison of the landing performances of the heuristics in the existence of an 

error in the parameter estimate Mass. 

 

  

  

Estimation Error in Mass 

-50 kg 50 kg -10% 10% 

MSD 
Landing Time (s) 53.01 57.76 50.44 59.93 

Landing Velocity (m/s) -2.21 -1.92 -2.45 -1.83 

Bang-Bang 
Landing Time (s) 15.75 16.84 15.38 16.97 

Landing Velocity (m/s) -25.59 -2.00 -36.14 -2.02 

New 
Landing Time (s) 22.16 22.93 21.77 23.30 

Landing Velocity (m/s) -2.11 -1.86 -2.29 -1.75 

Terminal 

Guidance 

Landing Time (s) 21.45 22.27 21.03 22.67 

Landing Velocity (m/s) -2.12 -1.98 -2.17 -2.00 
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Figure 8.2.  Landing behavior generated by the MSD heuristic in the presence of –50 kg 

error in the Mass estimate. 

 

 

Page 1

0.00 5.00 10.00 15.00 20.00

Second

1:

1:

1:

0

500,`

1000,

1: Height

1

1

1

1

 

Figure 8.3.  Landing behavior generated by the bang-bang heuristic in the presence of –50 

kg error in the Mass estimate. 
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Figure 8.4.  Landing behavior generated by the new heuristic in the presence of –50 kg 

error in the Mass estimate. 
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Figure 8.5.  Landing behavior generated by the terminal guidance heuristic in the presence 

of –50 kg error in the Mass estimate. 
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8.2.  An Error in Height Readings 

We assumed that there is an error in Height readings; four different types of height 

estimation errors are used to compare the behavioral differences of the heuristics. Two of 

these errors are in absolute terms, meaning that the reading is off by a constant value 

throughout the landing. The other two are in relative terms, so that the read value is a 

constant percentage of the current value at any time. This time, the relative error and the 

absolute error are qualitatively different as the variable Height is changing during landing 

and the amount of the relative error changes with it. The absolute errors are –10 m and +10 

m and the relative errors are –10% and +10% in this case. For +10 m error, Height is read 

by the heuristic 10 meters more than it is at all times during the simulation. The dynamic 

behavior generated by the heuristics in the presence of this error is given in Figures 8.6, 

8.7, 8.8, and 8.9. The Landing Velocity values for the mass-spring-damper, bang-bang, new 

heuristics and the terminal guidance heuristic deteriorate to ––2.86 m/s, –20.76 m/s, –11.36 

m/s, and –14.46 m/s; and the corresponding Maximum Landing Force values are 16,721 N, 

76,642 N, 44,296 N, and 54,890 N; respectively. Similar to the case with an error in the 

parameter estimates, the behavior generated by the bang-bang heuristic deteriorates more 

than the others. The new heuristic and the terminal guidance heuristic deteriorate as well, 

while mass-spring-damper heuristic makes a reasonable landing. 

 

In the existence of a negative absolute error new heuristic and bang-bang heuristic do 

not succeed in making a landing. They hover a distance away from the ground as the 

erroneous Height value they consider is very close to zero. It can be seen from Table 8.3 

that the cases with a positive relative error are managed well by all heuristics except for the 

bang-bang heuristic. All heuristics make a reasonable landing in the existence of a negative 

relative error, as the error gives the heuristics more space than they consider is available. 
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Table 8.3.  Comparison of the landing performances of the heuristics in the existence of an 

error in the variable reading Height. 

 

Height Reading Error 

-10 m 10 m -10% 10% 

MSD 
Landing Time (s) 61.63 51.46 62.85 49.02 

Landing Velocity (m/s) -1.21 -2.86 -1.81 -2.41 

Bang-Bang 
Landing Time (s) no landing 15.92 17.00 15.44 

Landing Velocity (m/s) no landing -20.76 -2.02 -34.41 

New 
Landing Time (s) no landing 21.24 32.86 30.28 

Landing Velocity (m/s) no landing -11.36 -1.86 -2.11 

Terminal 

Guidance 

Landing Time (s) 27.04 20.83 22.75 21.11 

Landing Velocity (m/s) -1.89 -14.46 -2.00 -2.15 
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Figure 8.6.  Landing behavior generated by the MSD heuristic in the presence of +10 m 

error in Height reading. 
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Figure 8.7.  Landing behavior generated by the bang-bang heuristic in the presence of 

+10 m error in Height reading. 

 

 

Page 1

0.00 15.00 30.00 45.00 60.00

Second

1:

1:

1:

0

500

1000

1: Height

1

1

1 1

 

Figure 8.8.  Landing behavior generated by the new heuristic in the presence of +10 m 

error in Height reading. 
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Figure 8.9.  Landing behavior generated by the terminal guidance heuristic in the presence 

of +10 m error in Height reading. 

 

8.3.  The Presence of an Actuator Delay 

In this section, we assume that there is an overlooked factor present in the model, an 

actuator delay (i.e. a delay in changing the level of the force created by the reverse force 

thruster). In this case, actuator delay is the time difference between the force that a 

heuristic demands and the application of that force. The behavior of the delayed output is 

affected by the duration and the order of delay. The resulting behaviors of same duration (2 

seconds), but different orders of delay are given in Figure 8.10. The input is assumed to be 

10, a constant. Outputs of different orders of delay are all assumed to be equal to zero, 

initially. Note that, discrete delay is also known as infinite order delay. It can be seen from 

the figure that smaller orders react more quickly to the discrepancy, but it takes more time 

for them to compensate for the whole difference. 

 



 

 

55 

 

0.00 2.00 4.00 6.00 8.00 10.00

Second

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

5:

5:

5:

0

5

10

1: Output 1st 2: Output 2nd 3: Output 3rd 4: Output discrete 5: Input

1

1

1

1
1

2

2

2
2 2

3

3

3 3 3

4

4 4 4 45 5 5 5 5

 

Figure 8.10.  Responses of different order delay structures to a step input. 

 

All four heuristics are evaluated with first order, second order, third order, and 

discrete (infinite order) actuator delays, where the duration of delay is 2 seconds in all 

cases. The landing performances of the heuristics with the inclusion of the four different 

orders of actuator delay can be seen in Table 8.4. Also the dynamic behaviors of landing in 

the presence of a discrete delay for different heuristics are given in Figures 8.11-8.14. 

 

Table 8.4.  Comparison of the landing performances of the heuristics in the existence of a 2 

second actuator delay. 

 Actuator Delay 

 1st order 2nd order 3rd order discrete 

MSD 
Landing Time (s) 55.41 55.47 55.48 55.52 

Landing Velocity (m/s) -1.74 -1.75 -1.75 -1.75 

Bang-Bang 
Landing Time (s) 14.20 14.10 14.06 13.96 

Landing Velocity (m/s) -99.71 -107.09 -110.42 -120.48 

New 
Landing Time (s) 22.51 27.23 20.04 19.98 

Landing Velocity (m/s) -1.94 -20.96 -21.59 -40.62 

Terminal 

Guidance 

Landing Time (s) 24.02 24.02 23.97 23.71 

Landing Velocity (m/s) -6.94 -10.75 -12.81 -17.94 
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The presence of delay creates no significant change in the behavior generated by the 

mass-spring-damper heuristic (Figure 8.11) and the new Landing Velocity value generated 

by this heuristic is around –1.75 m/s for all orders of delay. However, a huge deterioration 

in the behavior generated by the bang-bang heuristic is observed. The new Landing 

Velocity values generated by this heuristic are between circa –100 m/s in the best case and 

–120 m/s in the worst case. The control applied by the bang-bang heuristic in the presence 

of an actuator delay is minimal. As a result, the Landing Velocity values generated by the 

bang-bang heuristic in the presence of a 2-second actuator delay are very close to the worst 

achievable Landing Velocity value that is –133.59 m/s. The worst achievable value is 

obtained by applying no control for the given initial conditions. New heuristic manages to 

make a reasonable landing in the presence of a first order delay, but fails to do so in the 

presence of higher order delays. This is due to the fact that, as the delay order increases, 

the instability of oscillations around Desired Velocity increases (see Figure 8.15). 

 

Generally, when control becomes insufficient, Landing Velocity increases whereas 

Landing Time decreases, because of the early crash. A relatively big increase occurs in 

comparing Landing Velocity values of the first order delayed case to the second order 

delayed case of the new heuristic (Figure 8.16). The terminal guidance heuristic is able to 

make a hard landing with a first order delay and in the higher orders the Landing Velocity 

values increase to mild crashes. 

 

Similar to the cases with an error in the parameter estimates and with an error in 

readings, mass-spring-damper heuristic manages a safe landing, proving its superiority in 

robustness as compared to the other heuristic. 
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Figure 8.11.  Landing behavior generated by the MSD heuristic in the presence of discrete 

actuator delay. 
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Figure 8.12.  Landing behavior generated by the bang-bang heuristic in the presence of 

discrete actuator delay. 
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Figure 8.13.  Landing behavior generated by the new heuristic in the presence of discrete 

actuator delay. 
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Figure 8.14.  Landing behavior generated by the terminal guidance heuristic in the 

presence of discrete actuator delay. 
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Figure 8.15.  Velocity profiles of the new heuristic with different orders of delay. 
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Figure 8.16.  Landing behavior generated by the new heuristic in the presence of a second 

order delay of 2 seconds. 
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9.  FUEL CONSUMPTION AND VARIABLE MASS 

In previous chapters, it was assumed that the mass of the vehicle stays constant 

during landing. In real cases, when spacecrafts exert force they decrease in mass as they 

consume fuel for propulsion. With the inclusion of a decreasing predetermined amount of 

fuel it will also be possible to compare the heuristics’ fuel consumptions.  

 

This change in assumptions requires a modification to the previously explained soft 

landing model. The variable Mass, which was a constant before, is parted into two. It is 

comprised of the constant Vehicle Mass and the decaying Fuel Mass. In order to achieve 

this, Fuel Mass is a stock variable with a single outflow. This outflow will depend on 

Control Force and will be calculated based on a constant specific impulse. Specific 

impulse is a performance parameter describing the engine efficiency. The mass outflow 

from the engine is calculated based on the value of the specific impulse and the exerted 

force during landing. An engine with a higher specific impulse would exert more thrust 

with the same amount of fuel consumed (Huzel and Huang, 1992). 

 

The equation for Mass instead of Equation 3.6 becomes: 

 

  kgMassFuelMassVehicleMass   (9.1) 

 

  kgDTMassFuelinChangeMassFuelMassFuel ttDTt   (9.2) 

 

Generally, specific impulse is given as: 

 

  s
gm

F
Isp

0



 (9.3) 

or, 

  s/kg
gI

F
m

sp 0
  (9.4) 
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In these equations; F  is the exerted force, spI  is the specific impulse, 0g  is the 

gravitational acceleration constant 9.815 m/s
2
 and m  is the momentary change in mass. 

For Specific Impulse, the real value from the rocket of the Apollo Lunar Module was taken. 

The outflow of the stock variable Fuel Mass becomes: 

 

  skg
gImpulseSpecific

ForceControl
MassFuelinChange /

0
  (9.5) 

  sImpulseSpecific 311  (9.6) 

  2

0 8159 s/m.g   (9.7) 

 

The initial value of Fuel Mass is taken to be sufficient under the condition that the 

Max Force is applied for 30 seconds. This amounts to an initial Fuel Mass of 300 kg. 

Vehicle Mass is taken as 700 kg so that the initial Total Mass is the same with the constant 

mass cases (i.e. cases without variable mass assumption). 

 

  kgMassFuel 3000   (9.8) 

  kgMassVehicle 700  (9.9) 

 

The models with variable mass enable a comparison for the heuristics’ fuel 

consumption to be made. The amount of fuel consumption is a better representation of the 

efficiency of the heuristics than Landing Time. 
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10.  COMPARISON OF THE HEURISTICS UNDER VARIABLE 

MASS ASSUMPTION 

Each one of the four heuristics with all of the errors and deviations explained in 

Chapter 8 has been simulated again under the variable mass assumption. The landing 

performances of the heuristics under the variable mass assumptions given in Table 10.1. 

Fundamentally, there is no behavioral difference between the landing performances of the 

runs under constant and variable mass assumptions. 

 

Mostly, Landing Time values of the models with variable mass are less than their 

constant mass counterparts; an exception to this is the delayed versions of the mass-spring-

damper (MSD) heuristic. This exception can be explained by the delayed reduction in 

Control Force for the mass-spring-damper heuristic before landing. Another exception to 

the main observation about the decrease in Landing Time is obtained by the bang-bang 

heuristic in the underestimated Mass case. As Fuel Mass is consumed, Control Force 

becomes more effective and bang-bang heuristic makes a more reasonable landing, 

decreasing Landing Velocity and increasing Landing Time. 

 

The bang-bang heuristic’s force utilization qualitatively changes with variable mass 

assumption. Under constant mass assumption, once the thruster is initiated, the bang-bang 

heuristic uses the thruster at its maximum force until touchdown. When mass decays in the 

form of fuel consumption, there is a need for the bang-bang heuristic to switch on and off 

the thruster for many times until touchdown. This different force utilizations are compared 

in Figure 10.1. Net Force is generated under constant mass assumption and Net Force 2 is 

generated under variable mass assumption. It is worth mentioning that the maximum Net 

Force increases as time passes due to the decrease in mass, and, thus, decrease in 

Gravitational Force. 
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Figure 10.1.  Force utilization of the bang-bang heuristic when mass decays due to fuel 

consumption. 

 

Fuel consumption is the least in the bang-bang heuristic, as expected. New heuristic 

and terminal guidance heuristic consume similar amounts of fuel, even in the cases where 

they fail to achieve a reasonable landing; the only exception to this is the case with second-

order delay, where the difference in the fuel consumption of the two exceeds 10 kg. 

 

Mass-spring-damper heuristic takes two to three times the fuel the other heuristics 

take; disregarding the crash cases of the bang-bang heuristic, where there is almost no 

control and, thus, a very small amount of fuel consumption. Consequently, if the Fuel 

Mass were to be somewhat constrained, mass-spring-damper heuristic would be the first to 

be affected. It can also be said that an overestimation of Mass increases fuel consumption, 

while an underestimation of Mass decreases it. 
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Table 10.1.  Comparison of the landing performances of the heuristics with variable mass. 

 

   
baserun 

Estimation Error in Mass Height Reading Error Actuator Delay 

    -50 kg 50 kg -10% 10% -10 m 10 m -10% 10% 1st 2nd 3rd discrete 

MSD 

Landing Time (s) 54.72 52.22 57.07 49.94 58.95 61.16 50.71 61.76 48.79 57.94 57.96 57.97 57.98 

Landing Velocity (m/s) -2.01 -2.19 -1.88 -2.40 -1.81 -1.12 -2.87 -21.79 -2.36 -1.37 -1.37 -1.38 -1.38 

Fuel Consumption (kg) 149.20 143.00 155.10 137.20 159.70 165.20 139.00 166.5 134.40 160.50 161.00 161.30 162.40 

Bang-Bang 

Landing Time (s) 16.61 15.91 16.75 15.45 16.87 none 15.86 -16.90 15.52 14.20 14.10 14.06 13.96 

Landing Velocity (m/s) -2.38 -19.28 -2.01 -32.44 -2.01 none -21.31 2.01 -30.42 -99.46 -106.94 -110.30 -120.45 

Fuel Consumption (kg) 49.50 42.30 50.00 36.90 50.30 59.80
8
 41.50 -50.40 37.70 25.60 25.30 25.00 24.00 

New 

Landing Time (s) 22.22 21.84 22.59 21.47 22.94 none 20.98 22.97 21.58 22.26 27.79 19.96 19.98 

Landing Velocity (m/s) -2.09 -2.28 -1.97 -2.43 -1.87 none -11.85 -1.98 -2.23 -1.23 -23.10 -22.47 -42.38 

Fuel Consumption (kg) 65.00 63.90 66.00 62.80 67.00 86.50
8
 58.60 67.00 63.20 73.30 83.10 71.10 66.00 

Terminal 

Guidance 

Landing Time (s) 21.86 21.44 22.28 21.03 22.67 27.04 20.83 22.75 21.11 23.61 23.61 23.57 23.30 

Landing Velocity (m/s) -2.03 -2.10 -1.98 -2.12 -2.00 -1.98 -14.46 -2.00 -2.11 -5.61 -9.20 -11.22 -16.64 

Fuel Consumption (kg) 64.00 62.80 65.10 61.70 66.20 79.10 57.40 66.40 61.90 71.50 70.50 70.20 69.60 

 

                                                 

8
 In these cases, the vehicle does not land during the simulation run. Therefore, the values obtained are affected by the length of the simulation. 
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11.  CONCLUSION 

In this thesis, we study the soft landing of a vehicle on a surface in the absence of 

atmospheric molecules and we assume the landing process is controlled only by a reverse 

force thruster. The focus of the study is only on the movement in the vertical axis. 

Therefore, we ignore the movement of the spacecraft in the horizontal axes. We first build 

a soft landing model under these main assumptions. The model and the modeling process 

is discussed in full detail including the analyses for parameter value selection. Later, we 

derive three heuristics for the control of the soft landing model; the mass-spring-damper-

heuristic, the bang-bang heuristic, and a new heuristic, which is a combination of the first 

two. As a fourth heuristic, the terminal guidance heuristic is adapted from the work of 

Kriegsman and Reiss (1962). We disclose the entire derivation process for and discuss the 

behaviors obtained by the four heuristics. We tested the performances of these heuristics in 

the presence of an error in the parameter estimates; in the presence of an error in the height 

readings; and in the presence of an overlooked factor such as a delay in changing the level 

of the force created by the reverse force thruster, which is known as actuator delay. 

 

The mass-spring-damper based control heuristic requires a longer landing time 

compared to the other two heuristics, but it is more robust compared to the bang-bang 

control heuristic in the sense that it is less sensitive to the errors in parameter values, errors 

in readings, and presence of an actuator delay. Note that even in the absence of errors and 

delays, mass-spring-damper heuristic may crash the spacecraft depending on the initial 

conditions, which is intolerable. Bang-bang heuristic minimizes the time needed to land 

under the assumed conditions. However, this aggressive management of the time needed to 

land may make it crash the spacecraft under realistic conditions (e.g. a small deviation 

from assumed conditions). 

 

The new heuristic is developed by including the weight of supply line concept from 

the system dynamics literature, and combining the mass-spring-damper based heuristic and 

the bang-bang heuristic. The new heuristic is not superior to the mass-spring-damper 

heuristic and the bang-bang heuristic regarding all performance criteria. However, it is 

exempt from the intolerable weaknesses of the both (i.e. high dependency on initial 
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conditions of the mass-spring-damper heuristic and the high sensitivity to errors and delays 

of the bang-bang heuristic). 

 

An overestimation of Mass causes no problems for any of the heuristics, including 

the bang-bang heuristic; whereas an underestimation of Mass causes the bang-bang 

heuristic to crash. 

 

Absolute errors in Height readings are problematic in all heuristics except mass-

spring-damper heuristic. An absolute underestimation of Height causes the bang-bang 

heuristic and the new heuristic not to land, the terminal guidance heuristic makes a 

reasonable landing. An absolute overestimation of Height, however, causes the three 

heuristics except mass-spring-damper heuristic to crash. Relative errors in Height reading 

are not problematic for the heuristics except for the relative overestimation case in the 

bang-bang heuristic. 

 

The presence of an actuator delay causes no problems for the mass-spring-damper 

heuristic and the new heuristic is able to handle first-order delay. Generally, with higher 

orders of delay, the landing gets more problematic. The behavior resulting from the bang-

bang heuristic is very poor; the landing performance is almost like the case where no 

control is applied at all. The new heuristic and the terminal guidance heuristic attain 

positive velocities during simulation, which means they show undesired oscillatory 

behavior. 

 

The deteriorations observed in the cases under variable mass assumption are similar 

to the deteriorations observed in the cases with constant mass assumption; there is no 

qualitative difference between the behaviors obtained under both assumptions, ceteris 

paribus. Generally, Landing Time values of the models with variable mass are less than 

their constant mass counterparts; an exception to this is the delayed versions of the mass-

spring-damper heuristic. This exception can be explained by the delayed reduction in 

Control Force for the mass-spring-damper heuristic before landing. 

 

Fuel consumption is the least in bang-bang heuristic, as expected. New heuristic and 

terminal guidance heuristic consume similar amounts of fuel, even in the cases where they 
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fail to achieve a reasonable landing; the only exception to this is the case with second-

order delay, where the difference in the fuel consumption of the two exceeds 10 kg. Mass-

spring-damper heuristic takes two to three times the fuel the other heuristics take; 

disregarding the crash cases of the bang-bang heuristic, where there is almost no control 

and, thus, low fuel consumption. Consequently, if Fuel Mass were to be somewhat 

constrained, mass-spring-damper heuristic would be the first to be affected. It can also be 

said that an overestimation of Mass increases fuel consumption, while an underestimation 

of Mass decreases it. 

 

The main performance criteria are Landing Time, Landing Velocity, whether or not 

the operating range is limited, and robustness. According to this study, none of the 

heuristics presented in this thesis satisfy all the performance criteria. A heuristic that is the 

best according to one criterion may be the worst in the other. Hence, none of the heuristics 

is superior to the rest in all aspects. 

 

The mass-spring-damper heuristic is robust in the sense that it is the least sensitive to 

the deviations from the model assumptions. However, Landing Time for this heuristic is 

the longest, which also results in high fuel consumption. Moreover, this heuristic has a 

limited operating range; it crashes the vehicle if the initial conditions are outside of the 

operating range. 

 

The bang-bang heuristic gives the shortest landing time, but it is not robust in the 

sense that it is sensitive to all types of deviations from the model assumptions such as an 

error in the mass estimate, an error in the height reading, and the presence of an actuator 

delay. Even a minor deviation is highly risky for this heuristic. 

 

The new heuristic introduced in this thesis aims to avoid the weaknesses of the mass-

spring-damper and bang-bang heuristics. As a result, this heuristic gives a reasonable 

Landing Time, does not have a limited operating range, and it is less sensitive to the 

deviations from the model assumptions than the bang-bang heuristic. However, it does not 

outperform the mass-spring-damper and bang-bang heuristics in all performance criteria. 

Although, the formulations and the dynamic behaviors of the terminal guidance heuristic 

and the new heuristic are different, their landing performances are similar. Therefore, the 
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main conclusions about the new heuristic regarding the performance criteria are also valid 

for the terminal guidance heuristic. 

 

According to this study, it is very difficult to find a control heuristic that satisfies all 

performance criteria even for a very basic model of soft landing. Especially, the existence 

of an actuator delay further complicates this control problem. As a future study, we are 

planning to improve the new heuristic and the terminal guidance heuristic so as to obtain a 

reasonable behavior at least in the presence of a minor actuator delay. 
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APPENDIX A:  CALCULATION OF THE CRITICAL POINT IN 

THE BANG-BANG HEURISTIC 

The kinetic energy available at the critical point should be cancelled by the work 

done by the resultant force. 
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  JEW k  (A.4) 

 

Plugging in model parameters and initial conditions gives out a Critical Height of 

297.27 meters. 
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