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Abstract 
This paper presents a soft landing model and a related control heuristic. The aim of the 
modeling effort is to transparently represent the process of landing a spacecraft on the 
surface of a celestial body. The process of landing is a challenging task because there are 
two main contradictory performance criteria to be met simultaneously; the landing 
duration should be as short as possible, but at the same time crashing the spacecraft to 
the surface should be avoided. As an answer to this challenge, we adapted a control 
heuristic from the mass spring damper model using the similarity of the equations of the 
model presented in this paper to the equations of the mass spring damper model; both 
models can be reduced to a second order linear differential equation. According to the 
initial simulation runs, the adapted heuristic can reasonably land the spacecraft. 
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1. Introduction 

Soft landing is an interesting and challenging problem in space exploration. The 
process of landing is a challenging task because there are two main contradictory 
performance criteria to be met simultaneously; the landing duration should be as short as 
possible, but at the same time crashing the spacecraft to the surface should be avoided. In 
order to achieve a fast and safe landing on the surface of a celestial body, the landing 
process should be controlled. When landing on celestial bodies with no atmosphere (e.g. 
the moon), deceleration strategies that rely on the drag force (e.g. a parachute) do not 
work due to the absence of atmospheric molecules. Therefore, a reverse force thruster, 
which will decelerate the vehicle, is needed (see Figure 1). At the instant of landing, an 

                                                
1 This research is supported by a Marie Curie International Reintegration Grant within the 7th European 
Community Framework Programme (grant agreement number: PIRG07-GA-2010-268272) and also by 
Bogazici University Research Fund (grant no: 5025). 
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impact force is generated depending on the mass, velocity, and the landing gear 
specifications of the spacecraft. For a successful landing, this impact force must be under 
a certain limit and, ideally, it should be as low as possible so as not to harm the vehicle. 
We assumed a constant mass and fixed specifications for the landing gear. Thus, the 
magnitude of the impact force can only be controlled via controlling the velocity, which 
should be within certain limits to prevent a crash. If the only criterion was to prevent 
crashing the spacecraft, that would not be difficult to achieve by slowing down the 
landing process. However, long landing duration necessitates extensive use of fuel, which 
should also be avoided. Therefore, another goal in landing is to decrease the time to land. 
Consequently, a reasonable landing occurs when the vehicle descends to the surface 
quickly, but decelerates safely to low velocity values before the instant of landing (Liu, 
Duan, and Teo, 2008; Zhou et al., 2009). 

 

 
Figure 1: Free body diagram of the vehicle with a control force (F) generated by the 

reverse force thruster and the gravitational force (m∙g) 
 
We modeled the soft landing challenge using System Dynamics (SD) methodology 

(Barlas, 2002; Forrester, 1961 and 1971; Sterman, 2000). SD has a strong focus on the 
correct representation of the problem related elements of the system, which increases the 
validity of the constructed simulation model. The aim of the modeling effort was to 
transparently represent the process of landing a spacecraft on the surface of a celestial 
body. SD methodology serves the purpose of explicit representation of the model 
variables and parameters, which facilitates sharing and understanding of the model 
structure and dynamics (Barlas, 2002; Forrester, 1961 and 1971; Sterman, 2000). 
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As described before, the main goal in the soft landing problem is to land the 
spacecraft as gently and as fast as possible. In the fourth section, we present a control 
heuristic adapted from the mass spring damper model that guarantees safe landing 
conditions for the spacecraft according to the initial simulation runs that we obtained 
(third section). The total duration of landing seems plausible, as well. 

 
 

2. The Model Structure and Equations 
In this study, we first constructed a stock-flow model of the soft-landing problem, 

which is given in Figure 2. This diagram represents only the physical structure of the 
problem described in the previous section; it does not represent the controller (e.g. a 
human decision maker, a computer). Height and Velocity are the two stock variables in 
the model. Velocity, which is a stock variable, is at the same time the one and only flow 
of Height. Velocity has a single flow too; Acceleration. Height is controlled via Velocity, 
Velocity via Acceleration, Acceleration via Net Force, and Net Force via Control Force 
(equations 1-7)2. The control feedback loop also includes the controller, which 
determines Control Force of the reverse force thruster via Desired Control Force. Note 
that the natural inputs to the controller are Height and Velocity. Control Force cannot be 
more than the maximum force applicable by the thruster (equations 8 and 9). 

 
 mHeight 10000    (1) 

 mDTVelocityHeightHeight ttDTt   (2) 

 smVelocity /100   (3) 

 smDTonAcceleratiVelocityVelocity tDTt /  (4) 

 2// smMassNet ForceonAccelerati   (5) 

 kgMass 1000   (6) 

 NrceControl ForceDamping Fonal ForceGravitatioNet Force   (7) 
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2 One Newton amounts to the force needed to increase the velocity of a one kilogram body of mass by one 
meter per second in one second ( N = kg ∙ m / s2 ). 
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 NMax Force 000,30  (9) 

 
Positive Height, Velocity, Acceleration, and force directions are upward from the 

surface. Height equals zero means that the vehicle touches the ground, but the springs of 
the landing gear are at rest, so they bear no force at Height equals zero. Thus, when the 
vehicle comes to a static equilibrium, the springs of the landing gear get compressed 
balancing the weight (Gravitational Force) of the vehicle and Height becomes slightly 
less than zero. 

 

 
Figure 2: Stock-flow diagram of the model 

 
Gravitational Force, Damping Force, and Control Force add up to the Net Force 

acting on the vehicle (Equation 7). Gravitational Force acts on the vehicle due to mass 
and gravity (Equation 10). Corollary to constant Mass (Equation 6) and constant 
Gravitational Acceleration (Equation 11) assumptions, Gravitational Force is also a 
constant (Equation 10). The gravitational acceleration of the celestial body to be landed 
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on is assumed to be equal to the surface gravitational acceleration of Venus that is 8.87 
m/s2 (Equation 11). Note that the assumed landing conditions other than the gravitational 
acceleration do not resemble the conditions of Venus at all. 

 

 NonAcceleratinalGravitatioMassnal ForceGravitatio   (10) 

 287.8 smonAcceleratinalGravitatio   (11) 

 

The landing gear of the spacecraft is comprised of dampers and springs. Damping 
Force, which is a result of the compression of the landing gear, is generated after the 
spacecraft contacts the landing surface (Equation 12). To be able to correctly represent 
the conditional existence of Damping Force, we also defined a variable named Spring 
Compression, which represents the amount of compression of the landing gear (Equation 
13). Inclusion of Spring Compression is in accordance with our aim of obtaining a 
transparent model. Suspension Spring Coefficient, Suspension Damper Coefficient, and 
Mass determine the damping behavior, which can be subcritical, critical, or supercritical. 
The values of the two coefficients are selected such that a critically damped behavior is 
obtained after the touchdown3. 
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The simplifying model assumptions are given below: 
 The movement of the spacecraft in the horizontal axes is not modeled. Spacecraft is 

assumed to move only vertically. 

 There is no atmosphere in the landing area, thus no air friction exists that would 

                                                
3  mNefficient Spring CoSuspension /740,17  
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cause a drag force on the vehicle. 

 Gravitational Acceleration is assumed to be constant during landing, it does not 
change with the distance to the surface. 

 Mass is a constant, the change in the mass due to fuel consumption is ignored. 

 There are no delays caused by actuators; Desired Control Force generated by the 
controller affects Control Force without a time lag. 

 Information flow from the system to the controller is perfect and instantaneous; 
There are no errors or delays caused by measurement processes. 

 Upon touching the ground, the thruster is off and is not switched on again. The 
simplified model diagram in Figure 2 and Equation 8 do not reflect this assumption. 
By giving the simplified version of the model, we aim to improve the readability of 
the manuscript and prevent digression. 

 
 

3. Dynamic Behavior of Landing 
As described in the previous section, Height is controlled via Velocity (Equation 2), 

Velocity via Acceleration (Equation 4), Acceleration via Net Force (Equation 5), and Net 
Force via Control Force (Equation 7). The control feedback loop also includes the 
controller, which determines Control Force applied by the reverse force thruster via 
Desired Control Force. In order to obtain a reasonable value for Desired Control Force, 
the controller should consider the system state variables (i.e. Height and Velocity). Only 
by doing so is it possible to reach the aim of landing the spacecraft as gently and as fast 
as possible. Even under the simplifying assumptions listed in the previous section, the 
control task remains a challenging one because it is quite difficult to appropriately 
consider the system state information in the decisions. The main reason for the difficulty 
is that the control task requires simultaneous control of Height and Velocity, which –due 
to the physical structure of the problem– can only be indirectly affected by the reverse 
force thruster; Height and Velocity have inertia; their values do not change 
instantaneously (see Figures 1 and 2 and equations 1-7). 

 
The stock-flow model given in Figure 2 and defined by equations 1-9 describes the 

structure of the soft landing problem excluding the controller. The formulations of the 
heuristic suggested for the controller is explained in the next section. The dynamic 
behavior presented in figures 3-7 is generated by simulating the model including the 
controller with the proposed heuristic for 120 seconds (equations 1-13 and equations 17-
18). 
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The dynamic behavior of Height is given in Figure 3. Initially, the change in Height 
(i.e. Velocity) is relatively fast and, as the spacecraft approaches to the surface, the 
change in Height slows down. Hence, the behavior obtained by the control heuristic is a 
reasonable one; by a fast initial decline, the heuristic tries to decrease the time to land; by 
a slow final approach, it keeps the impact force well below harmful values. At the instant 
of touchdown, the value of Velocity is -0.05 meters per second (-0.18 km/h) creating a 
maximum impact force of circa 10,090 Newton, approximately 1.14 times the weight of 
the spacecraft on the target celestial body (8,870 Newton). The weight corresponds to the 
model variable Gravitational Force, which is the force that the landing gear must bear 
when the spacecraft is standing still on the ground. 
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Figure 3: Dynamic behavior of Height 

 
The dynamic behavior of Velocity and Net Force acting on the vehicle during landing 

are given in figures 4 and 5, which further explain the dynamic behavior obtained by the 
control heuristic. At first, the heuristic allows the spacecraft to accelerate in the negative 
direction towards the landing surface (see Figure 4, approximately within the time range 
of 0-10 seconds) by keeping Net Force negative (i.e. Control Force less than 
Gravitational Force, see figures 5 and 6). Aiming to decrease the duration of landing, 
Velocity continues to increase during this initial period. After this initial phase, Velocity 
decreases until the vehicle touches the surface (see Figure 4, approximately within the 
time range of 10-100 seconds). In this later phase, the heuristic produces more Control 
Force than Gravitational Force (Figure 6) resulting in a positive Net Force (Figure 5). At 
the moment of landing, Control Force is turned off and Damping Force, which is zero 
throughout the simulation up to this point, takes over and stops the vehicle (see figures 5 
and 6, approximately around 100 seconds). 
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Figure 4: Dynamic behavior of Velocity 
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Figure 5: Net force acting on the vehicle during landing 
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Figure 6: Absolute values of the forces acting on the vehicle during landing4 

                                                
4 In order to ease the comparison of the different forces acting on the vehicle, the directions of the forces 
are ignored on this diagram. 
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4. A Mass spring Damper Based Control Heuristic 
The stock-flow model given in Figure 2 represents only the physical structure of the 

soft landing problem. However, the simulated behavior discussed in the previous section 
is generated by the model including the suggested mass spring damper based control 
heuristic, which is assumed to be used by the controller in producing the values for 
Desired Control Force. The aim of this section is to present the formulations of this 
heuristic. 

 
Yasarcan and Barlas (2005) uses a procedure in developing control heuristics for 

control problems involving information delay or indirect control via a secondary-stock. 
This procedure adapts a well known successful heuristic for control problems involving 
material supply line delay, using the similarity of the differential equations of control 
problems involving different types of delay structures. The model presented in this paper 
can be reduced to a second order linear differential equation because it contains two stock 
variables, which are defined by approximate integral equations (Equation 2 and Equation 
4). The mass spring damper model is well studied and it is known how to obtain a certain 
behavior by adjusting the model parameter values. Furthermore, it can also be 
represented by a second order linear differential equation. The heuristic suggested in this 
paper is developed based on the similarity of the differential equations of the mass spring 
damper model and the model presented in this paper5. 

 

 
Figure 7: Mass spring damper schematic 

 
The schematic given in Figure 7 is a well known one. The differential equation of a 

non-driven (i.e. Fexternal = 0) mass spring damper model with mass m, spring constant k, 
and damper coefficient c is given below: 

 
0 xkxcxm   (14) 

 

                                                
5 The authors of this paper acknowledge that it is Dr. I. Emre Köse who suggested to us to use the mass 
spring damper model for this purpose. 
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In Equation 14, x represents displacement, x  represents velocity, and x  represents 
acceleration. This equation can be described by using stock-flow concepts, x  and x  
being the stocks and their associated flows being x  and x  respectively. Note that x  is a 
flow and a stock at the same time. As a further clarification, xk   is the spring force 
( springF ) and xc   is the damper force ( damperF ). The net force applied on the body of 

mass is the sum of these two forces ( xkxcFFF springdampernet   ). According to 

Newton’s second law of motion mass times acceleration is equal the net force acting on 
the body ( xmFnet  ). Therefore, mass times acceleration is equal to the sum of the 
spring force and damper force. Hence, Equation 14 is obtained. 

 

The damping ratio ζ of the mass spring damper model defined by Equation 14 is: 

 

km
c



2

   (15) 

 

The dynamics of the mass spring damper model can be underdamped, overdamped, or 
critically damped depending on the value of the damping ratio ζ. For ζ values under 1, the 
dynamic behavior is underdamped and for ζ values over 1, it is overdamped. The case 
where the damping ratio ζ is exactly 1 is called critically damped. When the dynamic 
behavior is underdamped, the spring dominates the movement and the body oscillates. In 
the critically damped case, the body asymptotically approaches the rest condition without 
an overshoot. In the overdamped case, the damper dominates the dynamics and the body 
approaches the rest condition slower compared to the critically damped case (Åström and 
Murray, 2008). As a summary, the importance of ζ is that determining its value 
determines the dynamics of the mass spring damper model. 

 
The suggested control heuristic is adapted from the mass spring damper model that is 

defined by Equation 14. Height, Velocity, Acceleration, and Mass in our model 
corresponds to x , x , x , and m  in Equation 14, respectively. In the heuristic, we named 
k  as Height Coefficient and c  as Velocity Coefficient. Thus, Equation 14 becomes: 
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Utilizing Newton’s second law of motion, the following can be written: 
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 NHeight
tCoefficien
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Velocity

ForceNetDesired 
















  (17) 

 
The reverse force thruster should also counteract Gravitational Force. Hence, 

Desired Control Force, which is the output of the heuristic and an input to Control Force 
(see Equation 8 and Figure 2), can be given as: 

 
 NForcenalGravitatioForceNetDesiredForceControlDesired   (18) 

 
The parameters of the adapted heuristic, Height Coefficient and Velocity Coefficient 

values are set to 10  mN /  and 200  msN / , respectively. Consequently, the damping 
ratio ζ for our model becomes: 
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The value of the damping ratio means that the suggested control heuristic produces a 

critically damped behavior for the height of the spacecraft. 
 
 

5. Conclusions and Future Research 
In this study, we first developed a soft landing model using System Dynamics 

methodology. The modeling effort was focused on obtaining a valid and transparent 
representation of the soft landing challenge, which is to land the spacecraft as gently and 
as fast as possible. The main reason for the challenge is that the control task requires 
simultaneous control of the height and velocity of the spacecraft, which have inertia and 
can only be indirectly affected by the reverse force thruster. We also presented a control 
heuristic, which is adapted from the mass spring damper model, as an answer to this 
challenge. According to the initial simulation runs that we obtained, the control heuristic 
guarantees safe landing conditions for the spacecraft. Also, the total duration of landing is 
reasonably short. 

 
The simulation model presented in this paper can be used to introduce dynamic 

complexity to physics and engineering students or as an introductory learning tool for the 
control of physical systems, and also as a platform for simulation experiments 
(simulation-based discovery learning environment). In the continuation of this study, we 
plan to extend our model by adding an action formation delay, which is assumed to be 
caused by an actuator, and a measurement/report formation delay, which is assumed to be 
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caused by a sensor. The addition of these delays to our model will make it more realistic 
because the actuators and sensors present in a soft landing system contribute to the 
dynamic complexity of that system as they are sources of delays. We anticipate that the 
addition of these delays will cause deterioration in the dynamic behavior to a great extent. 
In order to overcome the problematic behavior, we plan to adapt and use the heuristics 
developed by Yasarcan and Barlas (2005) and Yasarcan (2011), which are specifically 
suitable for this kind of control problems. It is also possible to develop a soft landing 
game based on the model as a platform for learning and dynamic decision making 
experimentation. 
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