BOĞAZİÇİ UNIVERSITY DEPARTMENT OF INDUSTRIAL ENGINEERING ## **Spring 2017 - 2018** ## **IE 516 - COMBINATORIAL OPTIMIZATION** Day and Time : M 9:00 - 11:00 W 9:00 - 11:00 Classroom : M 2180 M 3120 Instructor : İ. Kuban Altınel Office / Phone : Old Engineering Building, M 4034 / Ext. 6407 Office Hours : M 11:00 – 13:00 W 14:00 – 16:00 Grading Prob. sets : 4 or 5, 30% for their average Midterm : 30%, Close book, in class exam Final : 35%, Close book, in class exam Makeup : Only registered students who are eligible to take the final will be given a makeup exam if he/she fails the course or he/she is absent at the final exam with an officially accepted excuse. Attendance : 5% Prerequisite: IE 501 or a graduate course in Linear Programming Textbook: Combinatorial Optimization by W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, A. Schrijver #### References: Bertsimas, D., Tsitliklis, J. N., Introduction to Linear Optimization, 1997 Bazaraa, M. S., Jarvis, J. J., Sherali, H. D., Linear Programming and Network Flows, 4th ed., 2010 Ahuja, R.K., Magnanti, T.L., Orlin, J.B., Network Flows, Theory and Algorithms, 1993 Nemhauser, G.L., Wolsey, L.A., Integer and Combinatorial Optimization, 1988 Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A., Combinatorial Optimization, 1998 Schrijver, A., Combinatorial Optimization, 2003, v.1, v.2, v.3. Sipser, M., Introduction to the theory of computation, 2006 Garey, M., Johnson, D., Computers and Intractability, 1979 Lang, S., Linear Algebra, 3rd edition, 1987 # THEY ARE ALL AVAILABLE ON RESERVE AT THE LIBRARY ## TENTATIVE OUTLINE - 1. INTRODUCTION: What is combinatorial optimization? What is Integer Programming? Their relations and examples.. - 2. SHORTEST PATHS and SPANNING TREES: Trees, Dijkstra's algorithm, Heaps and their use, Bellman-Ford algorithm, All pair shortest path problem, Minimum Spanning Tree Problem, Kruskal and Prim algorithms, Disjoint set structures. - 3. FLOWS and CIRCULATIONS: Menger's theorem, Flows in networks, Maximum flow problem, minimum cost flow. - 4. MATCHINGS and COVERS IN BIPARTITE GRAPHS: Maximum cardinality matching, weighted bipartite matching. - 5. MATCHINGS and COVERS IN GENERAL GRAPHS: Tutte Berge formula, maximum cardinality matching, weighted matching, the matching polytope. - 6. INTEGRAL POLYHEDRA: Totally unimodular matrices, balanced and totally balanced matrices, packing and perfect graphs. - 7. MATROIDS AND SUBMODULAR FUNCTION OPTIMIZATION: Matroid axioms, matroid duality, weighted bipartite matching and matroids, submodularity, submodular flows. # **IE 516 TENTATIVE PROGRAM** | WEEK | MONTH | DAY | TENTATIVE DAILY OUTLINE | |------|----------|------------|--| | 1 | February | 05M
07W | Introduction Spanning tree problem | | 2 | | 12M
14W | Spanning tree problem Spanning tree problem | | 3 | | 19M
21W | Shortest path problem Shortest path problem | | 4 | | 26M
28W | Shortest path problem
Maximum flow problem | | 5 | March | 05M
07W | Maximum flow problem Maximum flow problem | | 6 | | 12M
14W | Matching theory / Tutte – Berge formula
Matching theory / Tutte – Berge formula | | 7 | | 19M
21W | Maximum cardinality matching in bipartite graphs Maximum cardinality matching in nonbipartite graphs | | 8 | | 26M
28W | Maximum cardinality matching in nonbipartite graphs
Minimum weight perfect matching in bipartite graphs | | 9 | April | 02M
04W | Minimum weight perfect matching in nonbipartite graphs
Minimum weight perfect matching in nonbipartite graphs | | 10 | | 09M
11W | Integral polyhedra Integral polyhedra | | 11 | | 16M
18W | SPRING BREAK
SPRING BREAK | | 12 | | 23M
25W | HOLIDAY
Integral polyhedra | | 13 | May | 30M
02W | Matroids
Matroids | | 14 | | 07M
09W | Matroids
Matroids | | | | | |