BOĞAZİÇİ UNIVERSITY DEPARTMENT OF INDUSTRIAL ENGINEERING

Spring 2017 - 2018

IE 516 - COMBINATORIAL OPTIMIZATION

Day and Time : M 9:00 - 11:00 W 9:00 - 11:00

Classroom : M 2180 M 3120

Instructor : İ. Kuban Altınel

Office / Phone : Old Engineering Building, M 4034 / Ext. 6407

Office Hours : M 11:00 – 13:00 W 14:00 – 16:00

Grading

Prob. sets : 4 or 5, 30% for their average Midterm : 30%, Close book, in class exam Final : 35%, Close book, in class exam

Makeup : Only registered students who are eligible to take the final will be given a makeup

exam if he/she fails the course or he/she is absent at the final exam with an officially

accepted excuse.

Attendance : 5%

Prerequisite: IE 501 or a graduate course in Linear Programming

Textbook: Combinatorial Optimization by W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, A. Schrijver

References:

Bertsimas, D., Tsitliklis, J. N., Introduction to Linear Optimization, 1997

Bazaraa, M. S., Jarvis, J. J., Sherali, H. D., Linear Programming and Network Flows, 4th ed., 2010

Ahuja, R.K., Magnanti, T.L., Orlin, J.B., Network Flows, Theory and Algorithms, 1993

Nemhauser, G.L., Wolsey, L.A., Integer and Combinatorial Optimization, 1988

Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A., Combinatorial Optimization, 1998

Schrijver, A., Combinatorial Optimization, 2003, v.1, v.2, v.3.

Sipser, M., Introduction to the theory of computation, 2006

Garey, M., Johnson, D., Computers and Intractability, 1979

Lang, S., Linear Algebra, 3rd edition, 1987

THEY ARE ALL AVAILABLE ON RESERVE AT THE LIBRARY

TENTATIVE OUTLINE

- 1. INTRODUCTION: What is combinatorial optimization? What is Integer Programming? Their relations and examples..
- 2. SHORTEST PATHS and SPANNING TREES: Trees, Dijkstra's algorithm, Heaps and their use, Bellman-Ford algorithm, All pair shortest path problem, Minimum Spanning Tree Problem, Kruskal and Prim algorithms, Disjoint set structures.
- 3. FLOWS and CIRCULATIONS: Menger's theorem, Flows in networks, Maximum flow problem, minimum cost flow.
- 4. MATCHINGS and COVERS IN BIPARTITE GRAPHS: Maximum cardinality matching, weighted bipartite matching.
- 5. MATCHINGS and COVERS IN GENERAL GRAPHS: Tutte Berge formula, maximum cardinality matching, weighted matching, the matching polytope.
- 6. INTEGRAL POLYHEDRA: Totally unimodular matrices, balanced and totally balanced matrices, packing and perfect graphs.
- 7. MATROIDS AND SUBMODULAR FUNCTION OPTIMIZATION: Matroid axioms, matroid duality, weighted bipartite matching and matroids, submodularity, submodular flows.

IE 516 TENTATIVE PROGRAM

WEEK	MONTH	DAY	TENTATIVE DAILY OUTLINE
1	February	05M 07W	Introduction Spanning tree problem
2		12M 14W	Spanning tree problem Spanning tree problem
3		19M 21W	Shortest path problem Shortest path problem
4		26M 28W	Shortest path problem Maximum flow problem
5	March	05M 07W	Maximum flow problem Maximum flow problem
6		12M 14W	Matching theory / Tutte – Berge formula Matching theory / Tutte – Berge formula
7		19M 21W	Maximum cardinality matching in bipartite graphs Maximum cardinality matching in nonbipartite graphs
8		26M 28W	Maximum cardinality matching in nonbipartite graphs Minimum weight perfect matching in bipartite graphs
9	April	02M 04W	Minimum weight perfect matching in nonbipartite graphs Minimum weight perfect matching in nonbipartite graphs
10		09M 11W	Integral polyhedra Integral polyhedra
11		16M 18W	SPRING BREAK SPRING BREAK
12		23M 25W	HOLIDAY Integral polyhedra
13	May	30M 02W	Matroids Matroids
14		07M 09W	Matroids Matroids